

SUBJECT TITLE AND CODE:DATABASE MANAGEMENT SYSTEMS -21CS53

SEMESTER AND SCHEME :V SEMESTER

Objectives

INSTITUTIONAL MISSION AND VISION

 To provide quality education and groom top-notch professionals, entrepreneurs and leaders for different

fields of engineering, technology and management.

 To open a Training-R & D-Design-Consultancy cell in each department, gradually introduce doctoral

and postdoctoral programs, encourage basic & applied research in areas of social relevance, and

develop the institute as a center of excellence.

 To develop academic, professional and financial alliances with the industry as well as the academia at

national and transnational levels.

 To develop academic, professional and financial alliances with the industry as well as the academia at

national and transnational levels.

 To cultivate strong community relationships and involve the students and the staff in local community

service.

 To constantly enhance the value of the educational inputs with the participation of students, faculty,

parents and industry.

Vision

 Development of academically excellent ,culturally vibrant, socially responsible and globally

competent human resources.

Mission

 To keep pace with advancements in knowledge and make the students competitive and capable at

the global level.

 To create an environment for the students to acquire the right physical, intellectual, emotional

and moral foundations and shine as torch bearers of tomorrow's society.

 To strive to attain ever- higher benchmarks of educational excellence.

Department of Computer Science And Design

ProgramEducationalObjectives(PEO'S):

1. Empower students with a strong basis in the mathematical, scientific and engineering fundamentals to

solve computational problems and to prepare them for employment, higher learning andR&D.

2. Gain technical knowledge, skills and awareness of current technologies of computer science

engineering and to develop an ability to design and provide novel engineering solutions for

software/hardware problems through entrepreneurial skills.

3. Exposure to emerging technologies and work in teams on interdisciplinary projects with effective

communication skills and leadership qualities.

4. Ability to function ethically and responsibly in a rapidly changing environment by applying innovative

ideas in the latest technology, to become effective professionals in Computer Science to beara life-long

career in related areas.

ProgramSpecificOutcomes(PSOs)

PSO1:Abilitytoapplyskillsinthefieldofalgorithms,databasedesign, webdesign,cloudcomputinganddata analytics.

PSO2:Applyknowledgeinthefieldofcomputernetworksforbuildingnetworkandinternet-basedapplications

Course

Code

Course Title

Core/Elective

Prerequisite

Contact

Hours

Total Hrs/

Sessions

L T P

21CS53

Database

Management System

Core

-

3

2

-

50

Objectives

1.Provide a strong foundation in database concepts, technology, and practice.

Practice SQL programming through a variety of database problems.

Demonstrate the use of concurrency and transactions in database

Design and build database applications for real world problems.

Topics Covered as Per Syllabus

Module-1: Introduction to Databases: Introduction, Characteristics of database approach,

Advantages of using the DBMS approach, History of database applications. Overview of

DatabaseLanguagesandArchitectures:DataModels,Schemas,andInstances.Threeschema

architecture and data independence, database languages, and interfaces, The Database System

environment. Conceptual Data Modelling using Entities and Relationships: Entity types,

Entity sets, attributes, roles, and structural constraints, Weak entity types, ER diagrams,

examples, Specialization and Generalization.

Module-2: Relational Model: Relational Model Concepts, Relational Model Constraints and

relational database schemas, Update operations, transactions, and dealing with constraint

violations. Relational Algebra: Unary and Binary relational operations, additional relational

operations (aggregate, grouping, etc.) Examples of Queries in relational algebra. Mapping

ConceptualDesignintoaLogicalDesign:RelationalDatabaseDesignusingER-to-Relational

mapping. SQL: SQL data definition and data types, specifying constraints in SQL, retrieval

queries in SQL, INSERT, DELETE, and UPDATE statements in SQL, Additional features of

SQL.

Module-3: SQL : Advances Queries: More complex SQL retrieval queries, Specifying

constraints as assertions and action triggers, Views in SQL, Schema change statements in SQL.

Database Application Development: Accessing databases from applications, Anintroduction to

JDBC, JDBC classes and interfaces, SQLJ, Stored procedures, Case study: The

internetbookshop.InternetApplications:Thethree-

Tierapplicationarchitecture,Thepresentationlayer, The Middle Tier

Module-4: Normalization: Database Design Theory – Introduction to Normalization using

Functional and Multivalued Dependencies: Informal design guidelines for relation schema,

Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal

Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join

Dependencies and Fifth Normal Form. Normalization Algorithms: Inference Rules,

Equivalence, and Minimal Cover, Properties of Relational Decompositions, Algorithms for

Relational Database Schema Design, Nulls, Dangling tuples, and alternate Relational Designs,

Further discussion of Multivalued dependencies and 4NF, Other dependencies and NormalForms.

Module-5:TransactionProcessing:IntroductiontoTransactionProcessing, Transaction

andSystem concepts,Desirablepropertiesof Transactions,Characterizingschedulesbasedon
recoverability,CharacterizingschedulesbasedonSerializability,TransactionsupportinSQL.

ConcurrencyControlinDatabases:Two-phaselockingtechniquesforConcurrencycontrol,

Concurrency control based on Timestamp ordering, Multiversion Concurrency control
techniques, Validation Concurrency control techniques, Granularity ofData items and

MultipleGranularity Locking. Introduction to Database Recovery Protocols: Recovery

Concepts, NO- UNDO/REDO recovery based on Deferred update, Recovery techniques based

onimmediate update, Shadow paging, Database backup and recovery from catastrophic failures
ListofTextBooks

1. DatabasesystemsModels,Languages,DesignandApplicationProgramming,RamezElmasri and
Shamkant B. Navathe, 7th Edition, 2017, Pearson.

2. Databasemanagementsystems,Ramakrishnan,andGehrke,3rdEdition,2014,McGrawHill
ListofReference Books

1. SilberschatzKorthandSudharshan,DatabaseSystemConcepts,6th Edition,Mc-GrawHill,

2013.
2. Coronel,Morris,andRob,DatabasePrinciplesFundamentalsof Design,Implementationand
Management, Cengage Learning 2012.
ListofURLs,TextBooks,Notes,MultimediaContent,etc

1. https://www.smartdraw.com/entity-relationship-diagram/

2. https://en.wikipedia.org/wiki/Database_normalization

3. www.databasteknik.se/webbkursen/relalg-lecture

4. https://technet.microsoft.com/en-us/library/bb264565(v=sql.90).aspx

5. pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/.../Ch16_Overview_Xacts.pdf

6. www.c-sharpcorner.com/UploadFile/f0b2ed/transaction-management-in-sql/

Course

Outcomes

Thestudents should beableto:

1. Identify,analyzeanddefinedatabaseobjects,enforceintegrityconstraints on

a database using RDBMS.
2. UseStructured Query Language(SQL) fordatabasemanipulation.
3. Designandbuildsimpledatabasesystems

4. Developapplicationtointeractwithdatabases.

https://www.smartdraw.com/entity-relationship-diagram/
https://en.wikipedia.org/wiki/Database_normalization
http://www.databasteknik.se/webbkursen/relalg-lecture
https://technet.microsoft.com/en-us/library/bb264565(v%3Dsql.90).aspx
http://www.c-sharpcorner.com/UploadFile/f0b2ed/transaction-management-in-sql/

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page1

 Introduction

Module1

Chapter1:Introduction to Databases

Databases and database technology have a major impact on the growing use of computers. It is fair

to say that databases play a critical role in almost all areas where computers are used, including

business, electronic commerce, engineering, medicine, genetics, law, education, and library

science.

Database

A database is a collection of related data.1 By data,we mean known facts that can be recorded and

that have implicit meaning. For example, consider the names, telephone numbers, and addresses of

the people you know.

A database has the following implicit properties:

 It represents some aspect of the real world, sometimes called the mini world or the

universe of discourse (UoD). Changes to the mini world are reflected in the database.

 It is a logically coherent collection of data,to which some meaning can be attached.

 It is designed, built, and populated with data for a specific purpose. It has an intended

group of users and some preconceived applications in which these users are interested.

To summarize: a database has some source(i.e., the mini world)from which data are derived, some

degree of interaction with events in the represented mini world and an audience that is interested in

using it.

Size/Complexity: A database can be of any size and complexity. For example, the list of names

and addresses referred to earlier may consist of only a few hundred records, each with asimple

structure. An example of a large commercial database is Amazon.com. It contains data forover 20

million books, CDs, videos, DVDs, games, electronics, apparel, and other

items.

Computerized vs. manual: A database may be generated and maintained manually or it may be

computerized. For example, simple database like telephone directory may be created and

maintained manually. Huge and complex database may be created and maintained either by a

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page2

groupofapplicationprogramswrittenspecificallyforthattaskorbyadatabasemanagement system.

DatabaseManagementSystem(DBMS)

A database management system (DBMS) is a collection of programs enabling users to create and

maintain a database. More specifically, The DBMS is a general-purpose software system that

facilitates the processes of defining, constructing, manipulating, and sharing

Databases among various users and applications.

 Defining a database involves specifying the data types, structures, and constraints of the

data to be stored in the database. The database definition or descriptive information is

stored by the DBMS in the form of a database catalog or dictionary; it is called meta-data.

 Constructing the database is the process of storing the data on some storage medium that

is controlled by the DBMS.

 Manipulating a database includes functions such as querying the database to retrieve

specific data, updating the database to reflect changes in the miniworld, and generating

reports from the data.

 Sharing a database allows multiple users and programs to access the database

simultaneously.

Other important functions provided by the DBMS include protecting the database and maintaining

it over a long period of time.

 Protection includes system protection against hardware or software malfunction (or

crashes) and security protection against unauthorized or malicious access.

 Atypical large database may have a life cycle of many years, so the DBMS must be able to

maintain the database system by allowing the system to evolve as requirements change

over time.

AdatabasetogetherwiththeDBMS softwareis referredtoas a database system.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page3

Fig1.1(a):A simplified database system environment

An Example

Consider a UNIVERSITY database for maintaining information concerning students, courses, and

grades in a university environment. The database is organized as five files, each of which stores

data records of the same type.

1. STUDENT file: stores data on each student.

2. COURSEfile:stores data on each course.

3. SECTIONfile:stores data on each section of a course.

4. GRADE_REPORT file:stores the grades that’ students receive in the various sections they

have completed.

5. PREREQUISITEfile: stores the prerequisites of each course.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page4

Fig1.1(b):A databasethatstores studentandcourseinformation

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page5

DefiningaUNIVERSITYdatabase

 Specify the structure of the records of each file - data elements to be stored in each

record.For example: each STUDENT record includes data to represent the student’s

Name,Student_number,ClassMajor.SimilarlyeachCOURSErecordincludesdatato

represent the Course_name, Course_number, Credit_hours, and Department.

 Specifyadatatypeforeachdataelementwithinarecord.Forexample:student’sName isa

string of alphabetic charactersStudent_number is an integer.

ConstructingtheUNIVERSITYdatabase

 To construct the UNIVERSITY database, we store data to represent each student,course,

section, grade report, and prerequisite as a record in the appropriate file.

 Records in the various files may be related. For example, the record forSmith in the

STUDENT file is related to two records in the GRADE_REPORT file thatspecify Smith’s

grades in two sections. Similarly, each record in the PREREQUISITEfile relatestwo course

records: one representing the course and the other representing

the prerequisite.

ManipulatingaUNIVERSITYdatabase

Database manipulation involves querying and updating.

Examples of queries are as follows:

 Retrieve the transcript—a list of all courses and grades—of ‘Smith’

 Listthenamesofstudentswhotookthesectionofthe‘Database’courseofferedinfall 2008

and their grades in that section

 List the prerequisites of the ‘Database’ course

Examples of updates include the following:

 Change the class of ‘Smith’ to sophomore

 Create a new section for the ‘Database’ course for this semester

 Enteragradeof ‘A’for‘Smith’ inthe‘Database’ sectionoflastsemester

Theseinformalqueriesandupdatesmustbespecifiedpreciselyinthequerylanguage of the

DBMS before they can be processed.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page6

As with software in general, design of a new application for an existing database or design of

abrand new database starts off with a phase called requirements specification and

analysis. These requirements are documented in detail and transformed into aconceptual design

that can be represented and manipulated using some computerizedtools so that it can be easily

maintained, modified, and transformed into a databaseimplementation.

Thedesign is then translated to alogical design that can be expressed in a data model implemented

in a commercialDBMS. The final stage isphysical design, during which further specifications are

provided for storing andaccessing the database. The database design is implemented, populated

with actualdata, and continuously maintained to reflect the state of the miniworld.

 CharacteristicsoftheDatabaseApproach

Databaseapproachvs.FileProcessingapproach

Consider an organization that is organized as a collection of departments/offices. Each department

has certain data processing "needs", many of which are unique to it.

In the file processing approach, each department would control a collection of relevant data files

and software applications to manipulate that data. For example, one user, the grade reportingoffice,

maykeep files on students and their grades. Programs to print a student’s transcript andto enter new

grades are implemented as part of the application. A second user, theaccounting office, may keep

track of students’ fees and their payments. Althoughboth users are interested in data about students,

each user maintains separate files—and programs to manipulate these files— because each requires

some data not available from the other user’s files.This redundancy in defining and storing data

resultsin wasted storage space and in redundant efforts to maintain common up-to-datedata.

In the database approach, a single repository maintains data that is defined onceand then accessed

by various users. In file systems, each application is free to namedata elements independently. In

contrast,inadatabase,thenamesorlabelsofdataaredefined once, andused repeatedlybyqueries,

transactions, and applications.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page7

Themaincharacteristicsofthedatabaseapproachversusthefile-processingapproacharethe following:

 Self-describingnatureofadatabase system

 Insulationbetween programsanddata,anddataabstraction

 Supportof multipleviews ofthe data

 Sharingofdata andmultiusertransaction processing

1. Self-DescribingNatureofaDatabaseSystem

A fundamental characteristic of the database approach is that the database system contains not

only the database itself but also a complete definition or description of the database structure

and constraints.This meta-data (i.e., data about data) is stored in the so-called system catalog,

which contains a description of the structure of each file, the type and storage format of each

field, and the various constraints on the data (i.e., conditions that the data must satisfy).

ThesystemcatalogisusednotonlybyusersbutalsobytheDBMSsoftware,whichcertainly

needsto"know" howthedataisstructured/organizedinordertointerpretitinamanner

consistentwith thatstructure.

Figure 1.2(a):Anexampleofa

databasecatalogforthedatabase

2. InsulationbetweenProgramsandData,andDataAbstraction

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page8

Program-Data Independence: In traditional file processing, the structure of the data files

accessed by an application is "hard-coded" in its source code. If, for some reason, we decideto

change the structure of the data ,everyapplication in which a description of that file's structure

is hard-coded must be changed!

In contrast, DBMS access programs, in most cases, do not require such changes, because the

structure of the data is described separately from the programs that access it and those

programs consult the catalog in order to ascertain the structure of the data so that theyinterpret

that data properly.

In other words, the DBMS provides a conceptual or logical view of the data to application

programs, so that the underlying implementation may be changed without the programs being

modified. (This is referred to as program-data independence.)

Program-operation independence: In object-oriented and object-relationalsystems , userscan

define operations on data as part of the databasedefinitions.An operation (also called a

function or method) is specified in two parts.The interface (or signature) of an operation

includes the operation name and thedata types of its arguments (or parameters). The

implementation (or method) of theoperation is specified separately and can bechanged without

affecting the interface.User application programs can operate on the data by invoking these

operationsthrough their names and arguments, regardless of how the operations are

implemented.This may be termed program-operation independence.

Data abstraction

The characteristic that allows program-data independence and program-

operationindependence is called data abstraction. A DBMS provides users with a conceptual

representationof data that does not include many of the details of how the data isstored or how

the operations are implemented. Informally, a data model is a type ofdata abstraction that is

used to provide this conceptual representation. The datamodel uses logical concepts, such as

objects, their properties, and their interrelationships,that may be easier for most users to

understand than computer storageconcepts. Hence, the data model hides storage and

implementation details that arenot of interest to most database users.

3. SupportofMultiple ViewsoftheData

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page9

A database typically has many users, each of whom may require a different perspectiveor

viewof the database. A view may be a subset of the database or it may containvirtual data that

is derived from the database files but is not explicitly stored. A multiuser DBMS whose users

have a variety of distinct applications mustprovide facilities for defining multiple views. For

example,oneuserofthedatabaseofFigure1.2maybeinterestedonlyinaccessingandprinting the

transcript of eachstudent; the view for this user is shown in Figure 1.2(b)

Fig1.2(

b):view

derived

fromthe

univers

ity

databas

e

4. SharingofDataandMultiuserTransaction Processing

AmultiuserDBMS,asits nameimplies,mustallowmultipleuserstoaccessthe database

at the same time. This is essential if data for multiple applications is to be integratedandmaintained

in a single database. The DBMS must include concurrencycontrol software to ensure that several

users trying to update the same data do so ina controlled manner so that the result ofthe updates is

correct. For example, whenseveral reservation agents try to assign a seat on anairline flight, the

DBMS shouldensure that each seat can be accessed by only one agent at a time for assignment to

apassenger. These types of applications are generally called online transaction

processing(OLTP) applications. A fundamental role of multiuser DBMS software istoensure that

concurrent transactions operate correctly and efficiently.

Theconceptofatransaction hasbecomecentral to manydatabaseapplications.Atransaction isan

executing program or process that includes one or more databaseaccesses, such as reading or

updating of database records. The DBMS must enforce several transaction properties. Theisolation

property ensures that each transaction appears to executein isolation from other transactions, even

though hundreds of transactions may beexecuting concurrently. The atomicity property ensures

that either all the databaseoperations in a transaction are executed or none are.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page10

DatabaseUsers

Usersmaybedividedinto

 Thosewhoactuallyuseandcontrolthedatabasecontent,andthosewhodesign,developand

maintain database applications called “Actors on the Scene”

 ThosewhodesignanddeveloptheDBMSsoftwareandrelatedtools,andthecomputer

systems operators called “Workers Behind the Scene”

ActorsontheScene

1. Database Administrator (DBA): chief administrator, who oversees and manages thedatabase

system (including the data and software). Duties include authorizing users to access the

database, coordinating/monitoring its use, acquiring hardware/software for upgrades, etc.The

DBA is accountable for problems such as securitybreaches and poor system response time.In

large organizations, the DBA might have a supportstaff.

2. Database Designers: responsible for identifying the data to be stored and for choosing an

appropriate way to organize it. Database designers typically interact with each potential

groupof users and develop views of the database that meet the data andprocessingrequirements

of these groups.The final database design must be capable of supportingthe requirements of all

user groups.

3. End Users: These are persons who access the database for querying, updating,and

report generation. Thereare several categories of end users:

 Casual end users: use database occasionally, needing different information each

time; use query language to specify their requests; typically middle- or high-level

managers.

 Naive/Parametric end users: biggest group of users; frequently query/update the

databaseusingstandardcannedtransactionsthathavebeencarefullyprogrammed and

tested in advance. Examples:

 banktellerscheckaccountbalances,postwithdrawals/deposits

 reservationclerks for airlines,hotels,etc.,check availabilityof

seats/rooms and make reservations.

 Sophisticated end users: include engineers, scientists, business analysts, and others

who thoroughly familiarize themselves with the facilities of the DBMS in order to

implement their own applications to meet their complex requirements.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page11

 Stand-alone users: maintain personal databases by using ready-made

programpackages that provide easy-to-use menu-based or graphics-basedinterfaces.

Ex:userofataxpackage that storesavarietyofpersonalfinancialdata for

tax purposes.

4. SystemAnalystsandApplicationProgrammers(SoftwareEngineers)

 System Analysts: determine needs of end users, especially naive and parametric

users, and develop specifications for canned transactions that meet these needs.

 Application Programmers: Implement, test, document, and maintain programs

that satisfy the specifications mentioned above.

WorkersbehindtheScene

1. DBMS system designers and implementers: design and implement the DBMS modules and

interfaces as a software package. A DBMS isa very complex software system that consists of

many components, or modules, including modules for implementing the catalog, query

language processing, interface processing, accessing and buffering data, controlling

concurrency, and handling data recovery and security.

2. Tool developers: design and implement tools that facilitate database modeling and design,

database system design, and improved performance.

3. Operators and maintenance personnel (system administration personnel) : responsible for

the actual running and maintenance of the hardware and software environment for the database

system.

 AdvantagesofUsingtheDBMSApproach

1. ControllingRedundancy

Data redundancy such as tends to occur in the "file processing" approach leads to wasted

storage space, duplication of effort and a higher likelihood of the introduction of

inconsistency.

In the database approach, the views of different user groups are integrated during database

design. This is known as data normalization, and it ensures consistency and saves storage

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page12

Space. However, it is sometimes necessary to use controlled redundancy to improve the

performance of queries. For example, we may store Student_name and Course_number

redundantly in a GRADE_REPORT file because whenever we retrieve a GRADE_REPORT

record, we want to retrieve the student name and course number along with the grade, student

number, and section identifier.

ADBMSshouldprovidethecapabilityto automaticallyenforcethe rulethatnoinconsistencies are

introduced when data is updated.

2. RestrictingUnauthorizedAccess

When multiple users share a large database, it is likely that most users will not be authorized to

access all information in the database. For example, financial data is often considered

confidential and only authorized persons are allowed to access such data. In addition, some

usersmayonly bepermitted to retrievedata, whereas others are allowed to retrieve and update.

Hence, the type of access operation—retrieval or update—must also be controlled. A DBMS

should provide a security and authorization subsystem, which the DBA uses to create

accounts, to specify account restrictions and enforce these restrictions automatically.

3. ProvidingPersistentStorageforProgramObjects

The values of program variables or objects are discarded once a program terminates, unlessthe

programmer explicitly stores them in permanent files, which often involves convertingthese

complex structures into a format suitable for file storage. Object-oriented database systems

make it easier for complex runtime objects to be saved in secondary storage so as to survive

beyond program termination and to be retrievable at a later time.

Object-oriented database systems are compatible with programming languages such as C++

and Java, and the DBMS software automatically performs any necessary conversions.

4. ProvidingStorageStructuresandSearchTechniquesforEfficientQueryProcessing

DBMS maintains indexes that are utilized to improve the execution time of queries andupdates.

DBMS has a buffering or caching module that maintains parts of the database inmain memory

buffers.The query processing and optimization module is responsible for choosing an efficient

query execution plan for each query submitted to the system.

5. ProvidingBackupandRecovery

The backup and recovery subsystem of the DBMS is responsible for recovery. For example, if

the computer system fails in the middle of a complex update transaction, the recovery

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page13

subsystem is responsible for making sure that the database is restored to the state it was inbefore

the transaction started executing. Disk backup isalso necessary in case of a catastrophic disk

failure.

6. ProvidingMultipleUser Interfaces

Becausemanytypesofuserswithvaryinglevelsoftechnicalknowledgeuseadatabase,a DBMS

should provide a variety of user interfaces. These include

 Querylanguagesforcasual users

 Programminglanguageinterfacesforapplicationprogrammers

 Formsandcommandcodesforparametricusers

 Menu-driveninterfacesandnaturallanguageinterfacesforstandaloneusers.

7. RepresentingComplexRelationshipsamongData

Adatabasemayincludenumerous varietiesof datathatareinterrelatedinmany ways.

For example each section record is related to one course record and to a number of

GRADE_REPORTrecords—oneforeachstudent whocompletedthatsection.ADBMS must have

the capability to represent a variety of complex relationships among the data, to define new

relationships as they arise, and to retrieve and update related data easily and efficiently.

8. EnforcingIntegrityConstraints

Most database applications are such that the semantics of the data require that it satisfy certain

restrictions in order to make sense.

Thesimplesttypeofintegrity constraintinvolvesspecifyingadatatypefor eachdata item.

For example, in student table we specified that the value of Name must be a string of no more

than 30 alphabetic characters.

More complex type of constraint is referential integrity involves specifying that a record inone

file must be related to records in other files. For example, in university database, we can specify

that every section record must be related to a course record.

Another type of constraint specifies uniqueness on data item values, such as every courserecord

must have a unique value for Course_number. This is known as a key or uniqueness

constraint.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page14

It is the responsibility of the database designers to identify integrity constraints during database

design.

9. PermittingInferencingandActionsUsingRules

In a deductive database system, one may specify declarative rules that allow the database to

infer new data. For example, figure out which students are on academic probation. Such

capabilities would take the place of application programs that would be used to ascertain such

information otherwise.

Active database systems go one step further by allowing "active rules" that can be used to

initiate actions automatically. In today’s relational database systems, it is possible to associate

triggers with tables.

10. AdditionalImplicationsofUsingtheDatabaseApproach

 Potential for Enforcing Standards : database approach permits the DBA to define and

enforce standards among database users in a large organization which facilitates

communication and cooperation among various departments, projects, and users within the

organization.Standards can be defined for names and formats of data elements, display

formats, report structures and so on.

 Reduced Application Development Time: once a database is up and running,substantially

less time is generally required to create new applications using DBMS facilities.

Development time using a DBMS is estimated to be one-sixth to one-fourth of that for a

traditional file system.

 Flexibility: It may be necessary to change the structure of a database as requirements

change. DBMSs allow changes to the structure of the database without affecting the stored

data and the existing application programs.

 AvailabilityofUp-to-DateInformation:DBMSmakesthedatabaseavailableto allusers.

Availability of up-to-date information is essential for many transaction-processing

applications, such as reservation systems or banking databases

 Economies of Scale: DBMS approach permits consolidation of data and applications, to

overlap between activities of data-processing in different projects or departments. This

enables the whole organization to invest in more powerful processors, storage devices, or

communication gear, rather than having each department purchase its equipment thus

reducing overall costs of operation and management.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page15

 HistoryofDatabaseApplications

 EarlyDatabaseApplicationsUsingHierarchicalandNetworkSystems

Earlydatabaseapplicationsmaintainedrecordsinlargeorganizationssuchascorporations, universities,

hospitals, and banks. In many of these applications, there

werelargenumbersofrecordsofsimilarstructure.Therewere alsomanytypesofrecords and

many interrelationships among them.

Problemswiththeearly databasesystems

- lackofdata abstractionandprogram-dataindependencecapabilities

- provided only programming language interfaces. This made it time-consuming and

expensive to implement new queries and transactions, since new programs had to be

written, tested, and debugged.

 ProvidingData AbstractionandApplicationFlexibilitywithRelational Databases

Relational databases were originally proposed to separate the physical storage of data from

its conceptual representation and to provide a mathematical foundation for data

representation and querying. The relational data model also introduced high-level query

languagesthatprovided analternativetoprogramminglanguageinterfaces,makingitmuch faster

to write new queries. Hence, data abstraction and program-data independence were much

improved when compared to earlier systems.

 Object-OrientedApplicationsandtheNeedforMoreComplexDatabases

Object-oriented databases (OODBs) mainly used in specialized applications, such as

engineering design, multimedia publishing, and manufacturing systems. In addition, many

object-oriented concepts were incorporated into the newer versions of relational DBMSs,

leading to object-relational database management systems, known as ORDBMSs.

 InterchangingDataon theWebforE-CommerceUsingXML

The World Wide Web provides a large network of interconnected computers. Users can

create documents using a Web publishing language, such as HyperText Markup Language

(HTML), and store these documents on Web servers where other users (clients) can access

them. Documents can be linked through hyperlinks, which are pointers to otherdocuments.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page16

Currently, eXtended Markup Language (XML) is considered to be the primary standard for

interchanging data among various types of databases and Web pages. XML combines

concepts from the models used in document systems with database modeling concepts.

 ExtendingDatabaseCapabilitiesforNew Applications

The success of database systems in traditional applications encouraged developers of other

types of applications to attempt to use them. The following are some examples of these

applications:

■ Scientificapplicationsthatstorelarge amountsofdataresultingfrom

Scientific experiments in areas such as high-energy physics, the mapping of the

human genome, and the discovery of protein structures.

■ Storage and retrieval of images, including scanned news or personal

photographs, satellite photographic images, and images from medicalprocedures

such as x-rays and MRIs (magnetic resonance imaging).

■ Storageandretrievalofvideos,suchasmovies,andvideoclipsfromnews or

personal digital cameras.

■ Dataminingapplicationsthatanalyzelargeamountsofdatasearchingfor the

occurrences of specific patterns or relationships, and for identifying

unusual patterns in areas such as credit card usage.

■ Spatial applications that store spatial locations of data, such as weather

information, mapsused ingeographical informationsystems, and in

automobile navigational systems.

■ Timeseriesapplicationsthatstoreinformationsuchaseconomicdataat

regular pointsin time,such as daily sales andmonthly gross national product

figures.

 DatabasesversusInformationRetrieval

Database technology is heavily used in manufacturing, retail, banking, insurance, finance,

and health care industries, where structured data is collected through forms, such asinvoices

or patient registration documents. An area related to database technology is Information

Retrieval (IR), which deals with books, manuscripts, and various forms of library-based

articles. Data is indexed, cataloged, and annotated using keywords. IR is concerned with

searching for material based on these keywords, and with the many problems dealing with

document processing and free-form text processing.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page17

WhenNottoUseaDBMS

 DBMS may involve unnecessary overhead costs that would not be incurred in traditional

file processing. The overhead costs of using a DBMS are due to the following:

 Highinitialinvestment inhardware,software,andtraining

 ThegeneralitythataDBMSprovidesfordefiningandprocessingdata

 Overheadforprovidingsecurity,concurrencycontrol,recovery,andintegrity

functions

 Therefore,itmaybemoredesirabletouseregularfilesunderthefollowingcircumstances:

 Simple,well-defineddatabaseapplicationsthatarenotexpectedtochangeatall

 Stringent,real-timerequirementsforsomeapplicationprogramsthatmaynotbe met

because of DBMS overhead

 Embeddedsystemswithlimitedstoragecapacity,whereageneral-purposeDBMS

would not fit

 Nomultiple-useraccesstodata

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page18

Chapter2:OverviewofDatabaseLanguagesandArchitectures

Introduction

The architecture of DBMS packages has evolved from the early monolithic systems, where the

whole DBMS software package was one tightly integrated system. Modern DBMS packages are

modular in design, with a client/server system architecture. In a basic client/server DBMS

architecture, the system functionality is distributed between two types of module.Aclient module

is designed to run on a user workstation or personal computer. The

client module handles user interaction and provides the user-friendly interfaces such as forms- or

menu-based GUIs. The other kind of module, called a server module handles data storage, access,

search, and other functions

 DataModels,Schemas,andInstances

DataModel

Adatamodel is acollection ofconcepts that can be used to describethestructureofadatabase. By

structure of a database we mean the data types, relationships and constraints that apply to the data.

Most data models also include a set of basic operations forspecifying retrievals and updates on the

database. Data model provides the necessary means to achieve abstraction.

CategoriesofDataModels

Data models can be categorized according to the types of concepts they use to describe the

database structure.

1. High-level or conceptual data models: provide concepts that are close to the way many

users perceive data. Conceptual data models use concepts such as entities, attributes, and

relationships.

2. Representational or implementation data models: provide concepts that may be easily

understood by end users but that are not too far removed from the way data isorganized in

computer storage. Representational data models hide many details of data storage on disk

but canbeimplemented on acomputer system directly.Representational orimplementation

data models are the models used mostfrequently

intraditionalcommercialDBMSs.Theseincludethewidelyusedrelational

datamodel,aswellastheso-calledlegacydatamodels—thenetworkandhierarchical

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page19

models. Representational data models represent data by using record structures and hence

are sometimes called record-based data models.

3. Low-level or physical data models: provide concepts that describe the details of how data

is stored on the computer storage media, typically magnetic disks. Physical data models

describe how data is stored as files in the computer by representing informationsuch

as record formats, record orderings, and access paths.

Databaseschema

The description of a database is called the database schema, which is specified duringdatabase

design and is not expected to change frequently.

Schemadiagram

A displayed schema is called a schema diagram. A schema diagram displays only some

aspects of a schema, such as the names of record types and data items, and some types of

constraints.

Figure2.1:Schema diagramforthe database

Schemaconstruct

Eachobjectin theschemais calledschema construct.Forexamplestudentor course.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page20

Databasestateor snapshot

Thedatainthedatabaseataparticularmomentin timeiscalleda databasestateorsnapshot.It is also

called the current set of occurrences or instances in the database. In a given database state, each

schema construct has its own current set of instances; for example, the STUDENT construct will

contain the set of individual student entities (records) as its instances.

The distinction between database schema and database state is very important. When we define a

new database, we specify its database schema only to the DBMS. At this point, the corresponding

database state is the empty state with no data. We get the initial state of the database when the

database is first populated or loaded with the initial data. From then on, every time an update

operation is applied to the database, we get another database state. At any point in time, the

database has a current state.

The DBMS is partly responsible for ensuring that every state of the database is a valid state—that

is, a state that satisfies the structure and constraints specified in the schema. The

DBMS stores the descriptions of the schema constructs and constraints—also called the meta-

data—in the DBMS catalog so that DBMS software can refer to the schema whenever it needs to.

The schema is sometimes called the intension, and a database state is called an extension of the

schema.

 Three-SchemaArchitectureandDataIndependence

TheThree-SchemaArchitecture

Thegoalofthethree-schemaarchitectureistoseparatetheuserapplicationsfromthephysical

database. In this architecture, schemas can be defined at the following three levels:

1. The internal level has an internal schema, which describesthephysicalstorage structure of

the database. The internal schema uses a physical data model and describes the complete

details of data storage and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the structure of the whole

database for a community of users. The conceptual schema hides the details of physical

storage structures and concentrates on describing entities, data types, relationships, user

operations, and constraints. Usually, a representational data model is used to describe the

conceptual schema when a database system is implemented.

3. The external or view level includes a number of external schemas or user views. Each

external schema describes the part of the database that a particular user group is interested

inandhidestherestofthedatabasefromthatuser group.Each externalschema istypically

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page21

implementedusingarepresentationaldatamodel,possiblybasedonanexternalschema design in

a high-level data model.

Figure2.2: Thethree-schema architecture.

In a DBMS based on the three-schema architecture, each user group refers to its own external

schema.Hence, theDBMS must transform arequest specified on an external schemainto arequest

against the conceptual schema, and then into a request on the internal schema for processing over

the stored database. If the request is a database retrieval, the data extracted

fromthestoreddatabase must bereformattedtomatchtheuser’sexternal view.

Theprocesses oftransforming requestsand resultsbetween levelsarecalled mappings.

DataIndependence

Data independence can bedefined as the capacity to changethe schemaat onelevel of adatabase

system without having to change the schema at the next higher level. We can define two types of

data independence:

1. Logicaldataindependenceisthecapacitytochangetheconceptualschema without having to

change external schemas or application programs. We may change the conceptual schema to

expand the database, to change constraints, or to reduce the database. Only the view

definition and the mappings need to be changed in a DBMS that supports logical data

independence.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page22

2. Physical data independence is the capacity to change the internal schema without

having to change the conceptual schema. Hence, the external schemas need not be

changed as well. Changes to the internal schema may beneeded because some physical

files were reorganized—for example, by creating additional access structures—to

improve the performance of retrieval or update.

Data independence occurs because when the schema is changed at some level, the schema

at the next higher level remains unchanged; only the mapping between the two levels is

changed.

 DatabaseLanguagesandInterfaces

TheDBMSmustprovideappropriatelanguagesandinterfacesforeachcategoryof users.

DBMSLanguages

Once the design of a database is completed and a DBMS is chosen to implement the

database,thefirststepistospecifyconceptualandinternalschemasforthedatabaseandany

mappings between the two.

DataDefinitionLanguage(DDL)

The data definition language (DDL) is used by the DBA and by database designers todefine

both schemas when no strict separation of levels is maintained . The DBMS will havea DDL

compiler whose function is to process DDL statements in order to identify descriptions of the

schema constructs and to store the schema description in the DBMS catalog.

StorageDefinitionLanguage (SDL)

Storage definition language is used when clear separation is maintained between the

conceptual andinternallevels,theDDLisusedto specifytheconceptualschemaonly. The

storage definition language (SDL), is used to specify the internal schema. The

mappings between the two schemas may be specified in either one of these languages.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page23

ViewDefinitionLanguage(VDL),

View definition language is usedtospecifyuserviewsandtheirmappingstothe conceptual schema.

In relational DBMSs, SQL is used in the role of VDL to define user or application views as

results of predefined queries.

DataManipulationLanguage(DML)

Data manipulation languages (DML) are used to perform manipulation operation such as

retrieval, insertion, deletion, and modification of the data. There are two main types of DMLs :

1. High-level or nonprocedural DML : can be used on its own to specify complex database

operations concisely. Many DBMSs allow high-level DML statements either to beentered

interactively from a display monitor or terminal or to be embedded in a general-purpose

programming language. In the latter case, DML statements must be identified within the

program so that they can be extracted by a precompiler and processed by the DBMS.High-

level DMLs, such as SQL, can specify and retrieve many records in a single DML

statement; therefore, they are called set-at-a-time or set-oriented DMLs. A query in a

high-level DML often specifies which data to retrieve rather than how to retrieve it;

therefore, such languages are also called declarative

2. Low-level or procedural DML: must be embedded in a general-purpose programming

language. This type of DML typically retrieves individual records or objects from the

database and processes each separately. language constructs, such as looping, to retrieve

and process each record from a set of records. Low-level DMLs are alsocalled record-at-

a-time DMLs because of this property. DL/1, a DMLdesigned for the hierarchical model,

is a low-level DML that uses commands such as GET UNIQUE, GET NEXT, or GET

NEXT WITHIN PARENT to navigate from record to record within a hierarchy of records

in the database.

Hostlanguage

Whenever DML commands, whether high level or low level, are embedded in a general-

purpose programming language, that language is called the host language and the DML is

called the data sublanguage.

Ahigh-levelDMLusedinastandalone interactive manneriscalledaquery language.

.

DBMSInterfaces

User-friendlyinterfacesprovidedbyaDBMS mayincludethefollowing:

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page24

1. Menu-BasedInterfacesforWebClientsorBrowsing:Theseinterfacespresent the user

with lists of options (called menus) that lead the user through theformulation

of a request. There is no need for the user to memorize the specific commands and

syntaxofaquerylanguage.Pull-downmenusareaverypopulartechniqueinWeb- based user

interfaces.

2. Forms-Based Interfaces: A forms-based interface displays a form to each user. Users can

fill out all of the form entries to insert new data, or they can fill out only certain entries, in

which case the DBMS will retrieve matching data for the remaining

entries.Formsareusuallydesignedandprogrammedfornaiveusers asinterfacestocanned

transactions.

3. Graphical User Interfaces: A GUI typically displays a schema to the user indiagrammatic

form. The user then can specify a query by manipulating the diagram. In many cases, GUIs

utilize both menus and forms. Most GUIs use a pointing device,

suchas amouse, toselect certainparts ofthe displayedschemadiagram.

4. NaturalLanguageInterfaces:Theseinterfacesacceptrequestswrittenin

English or some other language and attempt to understand them. A natural language

interface usually has its own schema, which issimilar to the database conceptual schema,

as well as a dictionary of important words. The natural language interface refers to the

wordsinitsschema,aswellastothesetofstandardwordsinitsdictionary,tointerpretthe request. If

the interpretation is successful, the interface generates a high-level query corresponding to

the natural language request and submits itto the DBMS for processing; otherwise, a

dialogue is started with the user

toclarifythe request.

5. Speech Input and Output: Applications with limited vocabularies such as inquiries for

telephone directory, flight arrival/departure, and credit card account information are

allowing speech for input and output to enable customers to access this information. The

speech input is detected using a library of predefined words and used to set up the

parameters that are supplied to the queries. For output, a similar conversion from text or

numbers into speech takes place.

6. Interfaces for Parametric Users: Parametric users, such as bank tellers, often

have a small set of operations that they must perform repeatedly. For example, a

tellerisabletousesinglefunctionkeysto invokeroutineandrepetitivetransactions

suchasaccountdepositsorwithdrawals,orbalanceinquiries.Usuallyasmallsetof

abbreviated commands is included, with the goal of minimizing the number of

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page25

keystrokesrequiredforeachrequest.

7. Interfaces for the DBA: Most database systems contain privileged commands

that can be used only by the DBA staff. These include commands for creating

accounts,settingsystemparameters,grantingaccountauthorization,changinga

schema, and reorganizing the storage structures of a database.

 TheDatabaseSystemEnvironment

DBMSComponent Modules

The top part of the figure refers to the various users of the database environment and

theirinterfaces.ThelowerpartshowstheinternalsoftheDBMSresponsibleforstorage of data

and processing of transactions.

DDL compiler-processes schema definitions, specified in the DDL, and stores

descriptions of the schemas (meta-data) in the DBMS catalog.

Interactivequeryinterface:interfaceforCasualusersandpersonswithoccasionalneedfor

information from the database.

Querycompiler-validatesforcorrectnessofthequerysyntax,thenamesoffilesanddata elements &

compiles them into an internal form.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page26

Query optimizer –concerned with the rearrangement and possible reordering of

operations, elimination of redundancies, and use of correct algorithms and indexes during

execution. It consults the systemcatalogforstatisticalandotherphysicalinformation about the

stored data and generates executable code that performsthe necessary operations for

the query and makes calls on the runtime processor.

Precompiler-extractsDMLcommandsfromanapplicationprogramandsendstothe DML

compiler for compilation into object code for database access.

Hostlanguagecompiler-restoftheprogramissenttothehostlanguagecompiler.The object

codes for the DML commands and the rest of the program are linked, forming a

cannedtransaction whoseexecutablecodeincludescallstotheruntimedatabase processor.

Runtimedatabase processor executes:

(1) theprivilegedcommands

(2) theexecutablequeryplans,and

(3) thecannedtransactionswithruntimeparameters.

It works with the system catalog and may update it withstatistics. It also works with the stored

data manager, which in turn uses basic operating system services for carrying out low-level

input/output (read/write) operations between the disk and main memory. The runtime database

processor handles other aspects of data transfer, such as management of buffers in the main

memory.

storeddatamanagerusesbasicoperatingsystemservicesforcarryingoutlow-level input/output

(read/write) operations between the disk and main memory.

concurrencycontrolandbackupandrecoverysystemsintegratedintotheworkingofthe runtime

database processor for purposes of transaction management.

 DatabaseSystem Utilities

DatabaseutilitieshelptheDBAtomanagethedatabasesystem.Commonutilities have the

following types of functions:

 Loading: used to load existing data files—such as text files or sequential files—into the

database.

 Backup: creates a backup copy of the database, usually by dumping the entire database onto

tape or other massstorage medium. The backup copy can beused to restore the database incase

of catastrophic disk failure. Incremental backups are also often used, where only changes since

the previous backup are recorded. Incremental backup is more complex, but saves storagespace.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page27

 Database storage reorganization: used to reorganize a set of database files into differentfile

organizations, and create new access paths to improve performance.

 Performance monitoring: monitors database usage and provides statistics to the DBA. The

DBA uses the statistics in making decisions such as whether or not to reorganize files or

whether to add or drop indexes to improve performance.

Otherutilitiesmaybeavailableforsortingfiles,handlingdatacompression,monitoring access

by users, interfacing with the network, and performing other functions.

 Tools,ApplicationEnvironments,andCommunications Facilities

 Tools

 CASE:usedinthedesignphaseofdatabase systems

 Data dictionary : In addition to storing catalog information about schemas and

constraints, the data dictionary stores other information, such as designdecisions,

usage standards, application program descriptions, and user information. Such a

systemisalsocalledaninformationrepository.Thisinformationcanbeaccessed

directly by users or the DBA when needed.

 Applicationdevelopmentenvironments

 PowerBuilder (Sybase) or JBuilder (Borland): provide an environment for

developing database applications including database design, GUIevelopment, querying

and updating, and application program development.

 Communications software: allow users at locations remote from the database system

site to access the database through computer terminals, workstations, or personal

computers. Integrated DBMS and data communications system is called a DB/DC

system

 CentralizedandClient/ServerArchitecturesforDBMSs

 CentralizedDBMSsArchitecture

AllDBMSfunctionality,applicationprogramexecution,anduserinterfaceprocessing carried

out on one machine

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page28

Figure2.5.1:Aphysicalcentralizedarchitecture

 Disadvantages:

- When the central site computer or database system goes down, then

everyone is blocked from using the system

- Communicationcostsfromtheterminalstothecentralsitecanexpensive

 BasicClient/ServerArchitectures

The client/server architecture was developed to deal with computing environments

in which a large number of PCs, workstations, file servers, printers, database servers,

Web servers, e-mail servers, and other software and equipment are connected via a

network.

 idea

- definespecializedserverswithspecific functionalities.

- forexamplefileserverthatmaintainsthefilesoftheclient

machines

- Theresourcesprovidedbyspecializedserverscanbeaccessedby

many client machines.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page29

- The client machinesprovide the user with the appropriateinterfacesto

utilize these servers and local processing power to run local

applications

Figure2.5.2(a):Logicaltwo-tierclient/serverarchitecture

Figure2.5.2(b):Physicaltwo-tierclient/server architecture.

The concept of client/server architecture assumes an underlying framework that consists of many

PCs and workstations as well as a smaller number of mainframe machines, connected via LANs

and other types of computer networks. A client is a user machine that provides user interface

capabilities and local processing. When a client requires access to additional functionality such as

database access—that does not exist at that machine, it connects to a server that provides the

needed functionality. A server isa system containing both hardware and software that can provide

services to the client machines, such as file access, printing, archiving, or database access.

 Two-TierClient/ServerArchitecturesforDBMSs

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page30

Thesoftwarecomponentsaredistributedovertwosystems:clientand server

 Serverhandles

- QueryandtransactionfunctionalityrelatedtoSQLprocessing

 Clienthandles

- Userinterfaceprogramsandapplicationprograms

The user interface programs and application programs can run on the client side. When DBMS

access is required, the program establishes a connection to the DBMS(which is on the server side)

once the connection is created, the client program can communicate with the DBMS.

Aclientprogramcanactuallyconnecttoseveral RDBMSsandsendqueryandtransactionrequests using

the ODBC API, which are then processed at the server sites. Any query results are sent back to the

client program, which can process and display the results as needed. A related standard for the Java

programming language, called JDBC, has also been defined to allow Java clientprograms to access

one or more DBMSs through a standard interface

Object-orientedDBMSs

The different approach to two-tier client/server architecture was taken by some object-oriented

DBMSs, where the software modules of the DBMS were divided between client and server in a

more integrated way.

 serverlevel

may include the part of the DBMS software responsible for handling data storage on disk

pages, local concurrency control and recovery, buffering and caching of disk pages.

 clientlevel

may handle the user interface, data dictionary functions, DBMS interactions with

programming language compilers, global query optimization, concurrency control, and

recovery across multiple servers, structuring of complex objects from the data in thebuffers.

In this approach, the client/server interaction is more tightly coupled and is done internally by the

DBMS modules—some of which reside on the client and some on the server—rather than by the

users/programmers.

 Three-Tierandn-TierArchitecturesforWeb Applications

ManyWebapplicationsuseanarchitecturecalledthethree-tierarchitecture,whichaddsan intermediate

layer between the client and the database server

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page31

Figure2.5.4(a):Logicalthree-tierclient/serverarchitecture

 Client

- ContainGUIinterfacesand someadditional application-specificbusinessrules

 ApplicationserverortheWeb server

- accepts requests from the client, processes the request and sends database queries

and commands to the database server, and then passes processed data from the

database server to the clients, where it may be processed further and filtered to be

presented to users in GUI format.

- It can also improve database security by checking a client’s credentials before

forwarding a request to the database server.

Figure2.5.4(b):Logicalthree-tierclient/serverarchitecture

Figure2.5.4(b)showsanotherarchitectureusedbydatabaseandotherapplicationpackage vendors.

 Presentationlayer

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page32

- displaysinformation totheuserandallowsdataentry

 Thebusinesslogiclayer

- handles intermediate rules and constraints before data is passed up to the user or down

to the DBMS

- can also act as a Web server, which retrieves query results from the database server and

formats them into dynamic Web pages that are viewed by the Web browser at the client

side

 Thebottomlayer

- includesall datamanagementservices

 N-tier Architecture

It is possible to divide the layers between the user and the stored data further into finercomponents,

thereby giving rise to n-tier architectures; where n may be four or five tiers. The business logic

layer is divided into multiplelayers

 Advantage

-any onetiercan runon an appropriateprocessor oroperating system platformand can be

handled independently.

Vendors of ERP (enterprise resource planning) and CRM (customer relationship management)

packages often use a middleware layer, which accounts for the front-end modules (clients)

communicating with a number of back-end databases (servers).

 ClassificationofDatabaseManagementSystems

Criteriaused toclassifyDBMSs are

1. Datamodelonwhich the DBMSisbased

 Relational: represents a database as a collection of tables, where each table can be

stored as a separate file.

 Object: defines a database in terms of objects, their properties, and their operations.

Objects with the same structure and behavior belong to a class, and classes are

organized into hierarchies (or acyclic graphs). The operations of each class are

specified in terms of predefined procedures called methods.

 Hierarchical and network (legacy): The network model represents data as record

types andalsorepresentsalimitedtypeof 1:Nrelationship,calledasettype. The

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page33

hierarchical model represents data as hierarchical tree structures. Each hierarchy

represents a number of related records.

 Native XML DBMS: uses hierarchical tree structures. It combines databaseconcepts

with concepts from document representation models. Data is representedas

elements; with the use of tags, data can be nested to create complex hierarchical

structures.

2. Numberofusers supported by thesystem

 Single-user:supportonlyoneuseratatimeandaremostlyusedwith PCs.

 Multiuser:supportconcurrentmultipleusers.

3. Numberofsitesover whichthedatabase is distributed

 Centralized:dataisstoredatasinglecomputersite

 Distributed:canhavetheactualdatabaseandDBMSsoftwaredistributedover many

sites, connected by a computer network

- HomogeneousDDBMSsusethesame DBMSsoftwareatallthesites

- HeterogeneousDDBMSscanusedifferentDBMSsoftwareateachsite

4. Cost

 Opensource:productslikeMySQLandPostgreSQLthataresupportedbythird- party

vendors with additional services.

 Different types of licensing: Standalone single user versions of some systems like

MicrosoftAccessaresoldpercopyorincludedintheoverallconfigurationof a

desktop or laptop. In addition, data warehousing and mining features, as well

as support for additional data types, are made available at extra cost.

5. Onthebasisof thetypes of access pathoptions forstoringfiles

-Onewell-knownfamilyofDBMSsisbasedoninvertedfilestructures.

.6.GeneralpurposeorSpecial purpose

- When performance is a primary consideration, a special-purpose DBMS can be designed

and built for a specific application; such a system cannot be used for other applications

without major changes. Many airline reservations and telephone directory systems

developed in the past are special-purpose DBMSs.

Chapter3:ConceptualDataModellingusingEntitiesandRelationships

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page34

Introduction

Conceptual modeling is a very important phase in designing a successful database application.

Entity-Relationship (ER) model is a popular high-level conceptual data model. This model and its

variations are frequently used for the conceptual design of database applications, and many

database design tools employ its concepts.

 UsingHigh-LevelConceptualDataModelsforDatabaseDesign

Figure3.1:Asimplifieddiagramtoillustratethe mainphasesofdatabasedesign.

The first step shown is requirements collection and analysis. During this step, the database

designersinterviewprospectivedatabaseuserstounderstandand documenttheir data

requirements. The result of this step isa concisely written set of users’ requirements.

Theserequirementsshouldbespecifiedinasdetailedandcompleteaformaspossible.Inparallel

withspecifyingthedatarequirements,itis usefultospecifytheknownfunctional requirements

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page35

of the application. These consist of the userdefined operations (or transactions) that will be

applied to the database, including both retrievals and updates.

Once the requirements have been collected and analyzed, the next step is to create a conceptual

schema for the database, using a high-level conceptual data model. This step is called conceptual

design. The conceptual schema is a concise description of the data requirements of the users and

includes detaileddescriptions oftheentity types, relationships, and constraints; theseareexpressed

using the concepts provided by the high-level data model.

The next step in database design is the actual implementation of the database, using a commercial

DBMS. Most current commercial DBMSs use an implementation data model—such as the

relational or the object-relational database model—so the conceptual schema is transformed from

the high-level data model into the implementation data model. This step is called logical design or

data model mapping; its result is a database schema in the implementation data model of the

DBMS.

The last step is the physical design phase, during which the internal storage structures, file

organizations, indexes, access paths, and physical design parameters for the database files are

specified. In parallel with these activities, application programs are designed and implemented as

database transactions corresponding to the highlevel transaction specifications.

 EntityTypes,EntitySets,Attributes,andKeys

TheERmodeldescribes dataasentities,relationships,andattributes.

 Entitiesand Attributes

Entity: a thing in the real world with an independent existence. An entity may be an object

with a physical existence (for example, a particular person, car, house, or employee) or it may

be an object with a conceptual existence (for instance, a company, a job, or a universitycourse).

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page36

Attributes:Particularpropertiesthatdescribeentity.Forexample,anEMPLOYEEentitymay be

described by the employee’s name, age, address, salary, andjob.

Figure3.2.1(a):Twoentities, EMPLOYEE e1,and COMPANYc1,and their attributes

Typesofattributes:

1.CompositeversusSimple(Atomic)Attributes

2.Single-valued versus multivalued

3. Storedversusderived

4. NULLvalues

5. Complexattributes

1. CompositeversusSimple(Atomic)Attributes

Composite Attributes can be divided into smaller subparts, which represent more basic

attributes with independent meanings.For example, the Address attribute of the

EMPLOYEE entity can be subdivided into Street_address, City, State, and Zip.

Composite attributes can form a hierarchy. For example, Street_address can be further

subdivided into three simple component attributes: Number, Street,

andApartment_number.The valueofa compositeattribute istheconcatenation ofthevalues of

its component simple attributes.

Figure3.2.1(b):Ahierarchyof
composite attributes.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page37

Attributes that are not divisible are called simple or atomic attributes. Example SSN of an

employee.

2. Single-ValuedversusMultivaluedAttributes

Attributes that have a single value for a particular entity are called single-valued. For example,

Age is a single-valued attribute of a person.

Attributes that can have a set of values for a particular entity are called Multivalued Attributes.

For example Colors attribute for a car, or a College_degrees attribute for a person. A multivalued

attribute may have lower and upper bounds to constrain the number of values allowed for each

individual entity. For example, the Colors attribute of a car may be restricted to have between one

and three values, if we assume that a car can have three colors at most.

3. StoredversusDerivedAttributes

An attribute, which cannot be derived from other attribute are called stored attribute. For

example, Birth_Date of an employee

Attributes derived from other stored attribute are called derived attribute. For example age of an

employee can be determined from the current (today’s) date and Date of Birth

4. NullValueAttribute(OptionalAttribute)

In some cases, a particular entity may not have an applicable value for an attribute. For example,

the Apartment_number attribute of an address applies only to addresses that are in apartment

buildings and not to other types of residences, such as single-family homes. Similarly, a

College_degrees attribute applies only to people with college degrees. For such situations, a

special valuecalled NULL is created.Anaddress ofasingle-family homewould haveNULLfor its

Apartment_number attribute, and a person with no college degree would have NULL for

College_degrees. NULL can also be used if we do not know the value of an attribute for a

particular entity

5. ComplexAttributes

If an attribute for an entity, is built using composite and multivalued attributes, then theseattributes

are called complex attributes. For example, a person can have more than one residence and each

residence can have multiple phones, an addressphone for a person entity can be specified as :

{Addressphone(phone{(AreaCode,PhoneNumber)},

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page38

Address(SectorAddress(SectorNumber,HouseNumber),

City, State, Pin))

}

Here {} are used to enclose multivalued attributes and () are used to enclosecomposite

attributes with comma separating individual attributes

 Entity Types, Entity Sets, Keys, and ValueSets

Entity Types

An entity type defines a collection (or set) of entities that have the same attributes. Each entity

type in the database is described by its name and attributes. For example, a company employing

hundreds of employees may want to store similar information concerning each of the employees.

These employee entities share the same attributes, but each entity has its own value(s) for each

attribute.

EntitySets

The collection of all entities of a particular entity type in the database at any point in time is called

an entity set; the entity set is usually referred to using the same name as the entity type. For

example, EMPLOYEE refers to both a type of entity as well as the current set of all employee

entities in the database.

Figure3.2.2(a):Twoentitytypes,EMPLOYEEandCOMPANY,andsomememberentitiesofeach.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page39

An entity type describes the schema or intension for a set of entities that share the same structure.

The collection of entities of a particular entity type is grouped into an entity set, which is also

called the extension of the entity type.

An entity type is represented in ER diagrams a rectangular box enclosing the entity type name.

Attribute names are enclosed in ovals and are attached to their entity type by straight lines.

Composite attributes are attached to their component attributes by straight lines. Multivalued

attributes are displayed in double ovals

KeyAttributesofanEntityType

An entity type usually has one or more attributes whose values are distinct for each individual

entity in the entity set. Such an attribute is called a key attribute, and its values can be used to

identify each entity uniquely. For example, the Name attribute is a key of the COMPANY entity

because no two companies are allowed to have the same name.

In ER diagrammatic notation, each key attribute has its name underlined inside the oval.Some

entity types have more than one key attribute. For example, each of the Vehicle_id andRegistration

attributes of the entity type CAR isa key in its own right

Example:TheCARentitytypewith twokeyattributes,RegistrationandVehicle_id.

Figure3.2.2(b) :ERdiagramnotation Entitysetwiththreeentities.

ValueSets(Domains)ofAttributes

Each simple attribute of an entity type is associated with a value set (or domain of values), which

specifies the set of values that may be assigned to that attribute for each individual entity. For

example, if the range of ages allowed for employees is between 16 and 70, we can specify thevalue

set of the Age attribute of EMPLOYEE to be the set of integer numbers between 16 and70.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page40

Value sets are not displayed in ER diagrams, and are specified usingthebasic data typesavailable in

most programming languages, such as integer, string, Boolean,float, enumerated type, subrange,

and so on.

Mathematically, an attribute A of entity set E whose value set is V can be defined as a function

from E to the power set P(V) of V: A : E → P(V).We refer to the value of attribute A for entity e

as A(e).A NULL value is represented by the empty set.

 ASampleDatabaseApplication

Miniworld : COMPANY database keeps track of a company’s employees, departments, and

projects.

 After the requirements collection and analysis phase, the database designers provide the

following description of the miniworld:

 Thecompanyisorganizedintodepartments.

 Each department has a unique name, a unique number, and a particular employee who

manages the department.We keep track of the start date when that employee began

managing the department. A department may have several locations.

 A department controls a number of projects, each of which has a unique name, a unique

number, and a single location.

 Westore each employee’s name, Social Security number, address, salary,gender, and birth

date.

 An employee is assigned to one department, but may work on several projects, which are

not necessarily controlled by the same department.

 We keep track of the current number of hours per week that an employee works on each

project. We also keep track of the direct supervisor of each employee (who is another

employee).

 We want to keep track of the dependents of each employee for insurance purposes. Wekeep

each dependent’s first name, gender, birth date, and relationship to the employee.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page41

Figure3.3(a):PreliminarydesignofentitytypesfortheCOMPANYdatabase.Someoftheshown attributes will

be refined into relationships.

 RelationshipTypes,RelationshipSets,Roles,andStructuralConstraints

Thereareseveralimplicitrelationshipsamongthevariousentitytypes.Wheneveranattributeofone entity type

refers to another entity type, some relationship exists. For example

 TheattributeManagerof DEPARTMENTreferstoan employeewho manages thedepartment

 TheattributeControllingdepartmentofPROJECTreferstothedepartmentthatcontrolsthe project

 TheattributeSupervisorofEMPLOYEEreferstoanotheremployee-theonewhosupervisesthis

employee

 TheattributeDepartmentofEMPLOYEEreferstothedepartmentforwhichtheemployeeworks In the

ER model,these references should not be represented as attributes but asrelationships

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page42

 RelationshipTypes,Sets,andInstances

A relationship type R among n entity types E1, E2, ..., En defines a set of associations—or a relationship

set—among entities from these entity types. Entity types and Entity sets, a Relationship type and its

corresponding Relationship set are usually referred to by the same name, R.

Mathematically, the relationship set R is a set of relationship instances ri , where each ri associates n

individual entities (e1, e2, ..., en), and each entity ei in ri is a member of entity set Ej , 1≤ j≤n. Each of the

entity types E1, E2, ..., En is said to participate in the relationship type R. similarly, each of the individual

entities e1, e2, ..., en is said to participate in the relationship instance ri = (e1, e2, ..., en)

Informally, each relationship instance ri in R is an association of entities, where the association includes

exactly one entity from each participating entity type. For example, consider a relationship type

WORKS_FOR between the two entity types EMPLOYEE and DEPARTMENT, which associates each

employee with the department for which the employee works in the corresponding entity set. Each

relationship instance in the relationship set WORKS_FOR associates one EMPLOYEE entity and one

DEPARTMENT entity.

Figure 3.4.1: Some instances in the WORKS_FOR relationship set, which represents a relationship type

WORKS_FOR between EMPLOYEE and DEPARTMENT.

employeese1 ,e3,ande6 workfordepartmentd1.employeese2 ande4 workfordepartmentd2 and

employees e5 and e7 work for department d3.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page43

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which are connected by

straight lines to the rectangular boxes representing the participating entity types. The relationship name is

displayed in the diamond-shaped box.

 RelationshipDegree,RoleNames,andRecursiveRelationships

DegreeofaRelationshipType

The degree of a relationship type is the number of participating entity types. A relationship type of

degree two is called binary, and one of degree three is called ternary An example of a binary

relationship WORKS_FOR and ternary relationship is SUPPLY

Figure3.4.2(a):SomerelationshipinstancesintheSUPPLYternaryrelationshipset.

Each relationship instance ri associates three entities—a supplier s, a part p and a project j—whenever s

supplies part p to project j.

RelationshipsasAttributes

It is sometimes convenient to think of a binary relationship type in terms of attributes. Consider the

WORKS_FOR relationship type. One can think of an attribute called Department of the EMPLOYEE

entity type, where the value of Department for each EMPLOYEE entity is a reference to the

DEPARTMENT entity for which that employee works. This concept of representing relationship types as

attributes is used in a class of data models called functional data models.

Inrelationaldatabases,foreignkeysareatypeofreferenceattributeusedtorepresentrelationships.

RoleNamesandRecursiveRelationships

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page44

Eachentitytypethatparticipates inarelationshiptypeplaysaparticularroleintherelationship.

The role name signifies the role that a participating entity from the entity type plays in each relationship

instance,andhelpstoexplainwhattherelationshipmeans.Forexample, intheWORKS_FORrelationship type,

EMPLOYEE plays the role of employee or worker and DEPARTMENT plays the roleof department or

employer.

Role names are not technically necessary in relationship types where all the participating entity types are

distinct, since each participating entity type name can be used as the role name. However, in some cases

the same entity type participates more than once in a relationship type in different roles.

In such cases the role name becomes essential for distinguishing the meaning of the role that each

participating entity plays. Such relationship types are called recursive relationships. Example ofrecursive

relationships : SUPERVISION relationship type

The SUPERVISION relationship type relates an employee to a supervisor, where both employee and

supervisor entities are members of the same EMPLOYEE entity set. Hence, the EMPLOYEE entity type

participates twice in SUPERVISION: once in the role of supervisor (or boss), and once in the role of

supervisee (or subordinate). Each relationship instance ri in SUPERVISION associates two employee

entities ej and ek , one of which plays the role of supervisor and the other the role of supervisee.

Figure 3.4.2(b): Arecursiverelationship

SUPERVISIONbetweenEMPLOYEEinthesupervisorrole(1)andEMPLOYEEinthe subordinaterole (2).

 ConstraintsonBinaryRelationshipTypes

Relationshiptypesusuallyhavecertainconstraintsthatlimitthepossiblecombinationsofentitiesthat may

participate in the corresponding relationship set. These constraints are determined from the

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page45

miniworld situation that the relationships represent.For example, if the company has a rule that each

employee must work for exactly one department, then we would like to describe this constraint in the

schema. Two main types of binary relationship constraints:

1. cardinalityratio

2. participation.

CardinalityRatiosforBinaryRelationships

Thecardinalityratiofor abinary relationshipspecifiesthe maximumnumberof relationshipinstancesthat an

entity can participate in. For example, in the WORKS_FOR binary relationship type,

DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department can be related to

any number of employees, but an employee can be related to (work for) only one department. Thepossible

cardinality ratios for binary relationship types are 1:1, 1:N, N:1, and M:N.

Exampleofa 1:1binary relationship

⚫ MANAGESwhichrelates adepartmententitytotheemployeewho managesthatdepartment

⚫ Thisrepresentstheminiworldconstraintsthat—atanypointintime—anemployeecanmanageone

department only and a department can have one manager only

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page46

ExampleofaM:Nbinary relationship

⚫ TherelationshiptypeWORKS_ONisofcardinalityratioM:N,becausethemini-worldruleisthat an

employee can work on several projects and a project can have severalemployees.

 CardinalityratiosforbinaryrelationshipsarerepresentedonERdiagramsbydisplaying1,M,andN on the

diamonds

ParticipationConstraintsandExistenceDependencies

Theparticipationconstraintspecifieswhethertheexistenceofanentitydependsonitsbeingrelatedto another entity

via the relationship type. This constraint specifies the minimum number of relationship instances that each

entity can participate in, and is sometimes called the minimum cardinality constraint.There are two types of

participation constraints:

• Total

• Partial

Total participation

If a company policy states that every employee must work for a department, then an employee entity can

exist only if it participates in at least one WORKS_FOR relationship Instance. Thus, the participation of

EMPLOYEE in WORKS_FOR is called total participation, meaning that every entity in the total set of

employee entities must be related to a department entity via WORKS_FOR. Total participation is also

called existence dependency

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page47

Partial participation

wedonotexpecteveryemployeetomanageadepartment.SotheparticipationofEMPLOYEEinthe MANAGES

relationship type is partial, meaning that some or part of the set of employee entities are related to some

department entity via MANAGES, but not necessarily all.

InERdiagrams,totalparticipationisdisplayedasadoublelineconnectingtheparticipatingentitytype to the

relationship, whereas partial participation is represented by a single line.

cardinalityratio+participationconstraints=structuralconstraintsofarelationship type.

 AttributesofRelationshipTypes

Relationship types can also have attributes, similar to those of entity types. For example, to record the

number of hours per week that an employee works on a particular project, we can include an attribute

Hours for the WORKS_ON relationship type. Another example is to include the date on which a manager

started managing a department via an attribute Start_date for the MANAGES relationship type.

Attributes of 1:1 or 1:N relationship types can be migrated to one of the participating entity types. For a

1:N relationship type, a relationship attribute can be migrated only to the entity type on the N-side of the

relationship. For M:N relationship types, some attributes may be determined by the combination of

participating entities in a relationship instance, not by any single entity. Such attributes must be specified

as relationship attributes.

 WeakEntityTypes

Entity types that do not have key attributes of their own are called weak entity types. Entities belongingto

a weak entity type are identified by being related to specific entities from another entity type in

combination with one of their attribute values. We call this other entity type the identifying or owner

entity type. We call the relationship type that relates a weak entity type to its owner the identifying

relationship of the weak entity type.

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep track of the

dependents of each employee via a 1:N relationship. In our example, the attributes of DEPENDENT are

Name,Birth_date, gender, and Relationship (to the employee). Two dependents of two distinct employees

may, by chance, have the same values for Name, Birth_date, gender, and Relationship, but they are still

distinct entities. They are identified as distinct entities only after determining the particular employee

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page48

entity to which each dependent is related. Each employee entity is said to own the dependent entities that

are related to it.

A weak entity type always has a total participation constraint (existence dependency) with respect to its

identifying relationship because a weak entity cannot be identified without an owner entity. A weak entity

type normally has a partial key, which is the attribute that can uniquely identify weak entities that are

related to the same owner entity. In our example, if we assume that no two dependents of the same

employee ever have the same first name, the attribute Name of DEPENDENT is the partial key.

In ER diagrams, both a weak entity type and its identifying relationship are distinguished by surrounding

theirboxesanddiamondswithdoublelines.Thepartialkeyattributeisunderlinedwithadashedordotted line.

 ERDiagrams,NamingConventions,andDesignIssues

 SummaryofNotationforERDiagrams

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page49

e,themeaningsattached tothedifferent constructsintheschema.

Prope

r

Nami

ng of

Sche

ma

Const

ructs

 C

hoose

names

that

convey,

asmuch

as

possibl

 Use singular names for entity types,rather than plural ones, because the entity type name

applies to each individual entity belonging to that entity type

 In ER diagrams, entity type and relationship type names are uppercase letters, attribute names

have their initial letter capitalized, and role names are lowercase letters.

 As a general practice, given a narrative description of the database requirements, the nouns

appearing in the narrative tend to give rise to entity type names, and the verbs tend to indicate

names of relationship types. Attribute names generally arise from additional nouns thatdescribe

the nouns corresponding to entity types.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page50

 Anothernamingconsiderationinvolveschoosingbinaryrelationshipnames to maketheER

diagram of the schema readable from left to right andfrom top to bottom.

 DesignChoicesforERConceptual Design

In general, the schema design process should be considered an iterative refinement process, where

an initial design is created and then iteratively refined until the most suitable design is reached.

Some of the refinements that are often used include the following:

 A concept may befirst modeled as an attribute and then refined into a relationship because

it is determined that the attribute is a reference to another entity type. It is often the casethat

a pair of such attributes that are inverses of one another are refined into a binary

relationship.

 Similarly, an attribute that exists in several entity types may be elevated or promoted to an

independent entity type. For example, suppose that several entity types in a UNIVERSITY

database, such as STUDENT, INSTRUCTOR, and COURSE, each has an attribute

Department in the initial design; the designer may then choose to create an entity type

DEPARTMENT with a single attribute Dept_name and relate it to the three entity types

(STUDENT, INSTRUCTOR, and COURSE) via appropriate relationships.

 An inverse refinement to the previous case may be applied—for example, if an entity type

DEPARTMENT exists inthe initial design witha single attribute Dept_name and isrelated

to only one other entity type, STUDENT. In this case, DEPARTMENT may be reduced or

demoted to an attribute of STUDENT.

 AlternativeNotationsforERDiagrams

There are many alternative diagrammatic notations for displaying ER diagrams. One alternativeER

notation for specifying structural constraints on relationships, which replaces the cardinality ratio

(1:1, 1:N, M:N) and single/double line notation for participation constraints. This notation involves

associating a pair of integer numbers (min, max)with each participation of an entity type E in a

relationship type R, where 0 ≤ min≤ max and max ≥ 1.

The numbers mean that for each entity e in E, e must participate in at least min and at most max

relationship instances in R at any point in time. In this method, min= 0 implies partial participation,

whereas min > 0 implies total participation.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page51

Figure3.6.4 (a): ER diagramforCompany Database

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page52

Figure3.6.4(b):ER diagramforCompany Database(usingalternativenotation)

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page53

 RelationshipTypesofDegreeHigherthanTwo

ChoosingbetweenBinaryandTernary(orHigher-Degree)Relationships A

relationship type R of degree n will have n edges inan ER diagram, one connecting R to each

participating entity type

Fig3.7.1(a): TheSUPPLYrelationship

Figure 3.7.1(a0 shows the ER diagram notation for a ternary relationship. SUPPLY is a set of

relationship instances (s, j, p), where s is a SUPPLIER who is currently supplying a PART p to a

PROJECT j.

Fig3.7.1(b)ERdiagramforthreebinaryrelationshiptypes CAN_SUPPLY,USES,and SUPPLIES

Figure3.7.1(b)showsanERdiagramforthreebinaryrelationshiptypesCAN_SUPPLY,USES, and

SUPPLIES. CAN_SUPPLY between SUPPLIER and PART, includes an instance (s, p)

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page54

whenever supplier s can supply part p (to any project). USES between PROJECT and PART,

includes an instance (j, p) whenever project j uses part p. SUPPLIES between SUPPLIER and

PROJECT, includes an instance (s, j) whenever supplier s supplies some part to project j.

Some database design tools are based on variations of the ER model that permit only binary

relationships. In this case, a ternary relationship such as SUPPLY must be represented as a weak

entity type, with no partial key and with three identifying relationships.

akentitytype

Fig

3.7.

1(c

):

SU

PP

LY

rep

res

ent

ed

asa

we

The three participating entity types SUPPLIER, PART, and PROJECT are together the owner

entity types.Hence, an entity in the weak entity type is identified by the combination of its three

owner entities from SUPPLIER, PART, and PROJECT.

 ConstraintsonTernary(orHigher-Degree)Relationships

Therearetwonotations forspecifyingstructural constraintsonn-ary relationships

1. basedonthecardinalityrationotationofbinaryrelationshipsdisplayed

- 1,M,orNisspecifiedoneachparticipationarc(bothMandNsymbolsstandfor many or

any number)

2. basedonthe(min,max)notation

- specifiesthateachentityisrelatedtoatleastminandatmostmaxrelationship

instances in the relationship set

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page55

 SpecializationandGeneralization

 Specialization

Specialization is the process of defining a set of subclasses of an entity type; this entity type is

called the superclass of the specialization. The set of subclasses that forms a specialization is

defined on the basis of some distinguishing characteristic of the entities in the superclass.

For example, the set of subclasses {SECRETARY, ENGINEER, TECHNICIAN} is a

specialization of the superclass EMPLOYEE that distinguishes among employee entities based on

the job type of each employee entity. We may have several specializations of the same entity type

based on different distinguishing characteristics. For example, another specialization of the

EMPLOYEE entity type may yield the set of subclasses {SALARIED_EMPLOYEE,

HOURLY_EMPLOYEE};thisspecializationdistinguishesamongemployeesbasedonthemethod of

pay.

Figure3.8.1(a):EERdiagramnotationtorepresentsubclassesandspecialization.

Figure3.8.1(a)shows howwerepresent aspecialization diagrammatically in an EER diagram. The

subclasses that define a specialization are attached by lines to a circle that represents the

specialization, which is connected in turn to the superclass. The subset symbol on each line

connecting a subclass to the circle indicates the direction of the superclass/subclass relationship.5

Attributes that apply only to entities of a particular subclass—such as TypingSpeed of

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page56

SECRETARY—are attached to the rectangle representing that subclass. These are called specific

attributes (or local attributes) of the subclass.

Similarly, a subclass can participate in specific relationship types, such as the

HOURLY_EMPLOYEE subclass participating in the BELONGS_TO relationship inFigureFigure

3.8.1(b).

Figure3.8.1(b): Instancesof aspecialization

Figure 3.8.1 (b) shows a few entity instances that belong to subclasses of the {SECRETARY,

ENGINEER, TECHNICIAN} specialization. An entity that belongs to a subclass represents the

samereal-worldentityastheentityconnectedtoit intheEMPLOYEEsuperclass,eventhoughthe same

entity is shown twice; for example, e1 is shown in both EMPLOYEE and SECRETARY. There

are two main reasons for including class/subclass relationships and specializations in a data model.

 The firstisthat certain attributes mayapply to some but not all entities of the superclass. A

subclass is defined in order to group the entities to which these attributes apply. The

members of the subclass may still share the majority of their attributes with the other

members of the superclass.

 The second reason for using subclasses is that some relationship types may be participated

in only by entities that are members of the subclass. For example, if only

HOURLY_EMPLOYEES can belong to a trade union, we can represent that fact by

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page57

creatingthesubclassHOURLY_EMPLOYEEofEMPLOYEEandrelatingthesubclassto an

entity type TRADE_UNION via the BELONGS_TO relationship type

Insummary,thespecializationprocessallowsustodothefollowing:

 Defineaset ofsubclasses of an entitytype

 Establishadditionalspecificattributeswitheachsubclass

 Establish additional specific relationship types between each subclass and otherentitytypes

or other subclasses

 Generalization

Generalization process can be viewed as being functionally the inverse of the specialization

process. It is a process of defining a generalized entity type from the given entity types.

Generalization is the reverse process of abstraction in which we suppress the differences among

several entity types, identify their common features, and generalize them into a single superclass

Forexample,considertheentitytypes CARandTRUCKshowninFigure 3.8.2(a).

Figure3.8.2(a):Twoentitytypes,CARand TRUCK

Figure3.8.2(b):Generalizing CARandTRUCK intothesuperclass VEHICLE.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page58

Because they have several common attributes, they can be generalized into the entity type

VEHICLE, as shown in Figure 3.8.2(b). Both CAR and TRUCK are now subclasses of the

generalized superclass VEHICLE.

A diagrammatic notation to distinguish between generalization and specialization is used in some

design methodologies. An arrow pointing to the generalized superclass represents a generalization,

whereas arrows pointing to the specialized subclasses represent a specialization.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page59

Question Bank

1. Definethe followingterms:

i)data ii) database iii) DBMS iv) program-data independence v)Canned

transaction

2. Definethedatabaseandbrieflyexplain theimplicitpropertiesofthe database.

3. DiscussthemainCharacteristicsofthedatabaseapproachandhowdoesitdifferfrom

Traditional file systems?

4. Whatarethedifferenttypesofdatabaseendusers?Discussthemainactivitiesofeach.

5. Breiflydiscusstheadvantages ofusingtheDBMS.

6. Definethe followingterms:

i)datamodeii)databaseschema iii)databasestateiv)schemadiagram

7. Describethethree-schemaarchitecture.Whydoweneedmappingsbetweenschema

levels?

8. Whatisthedifferencebetweenlogicaldataindependenceandphysicaldataindependence?

9. WhatisthedifferencebetweenproceduralandnonproceduralDMLs?

10. Discussthevariousdatabaselanguages.

11. Discussthedifferenttypesof user-friendlyinterfacesandthetypesofuserswhotypically use

each.

12. Explainthecomponentmodules ofDBMS andtheirinteraction withthehelpof adiagram.

13. Discusssometypes ofdatabaseutilitiesandtools andtheirfunctions.

14. Explaintwo-tierandthree-tierarchitecture.

15. Discusstheclassificationofdatabasemanagementsystems.

16. Explainwith aneat diagram,thephasesofdatabasedesign.

17. Definethe followingterms:

i)Entityii)attributeiii)entitytypeiv)entitysetv)keyattributevi)valueset

v)degreeofarelationshiptypevi) rolenamesvii)cardinalityratioviii)participation constraints

18. Explainthedifferenttypesof attributesthatoccurinanERmodelwith anexample.

19. Whatismeantbyarecursiverelationshiptype?Givesomeexamples of recursive

relationship types.

20. Whatisaweak entitytype?Explaintheroleofpartial key inthedesignof weakentity type.

21. Listsymbolsused inERdiagramand theirmeaning.

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page60

22. Discussthenaming conventionsusedfor ERschemadiagrams.

23. Explainwithanexamplespecializationandgeneralization.

24. Design an ER diagram for an insurance company. Assume suitable entity types like

CUSTOMER, AGENT, BRANCH, POLICY, PAYEMENT and the relationship between

them.

25. Designan ER-diagramfortheMovie -databaseconsideringthe following requirements:

i) EachMovieisidentifiesbyitstitleandyearofrelease, ithaslengthinminutesandcan have

zero of more quotes, language.

ii) Productioncompanies are identified by Name, they have address, and eachproduction

company can produce one or more movies.

iii) Actors are identified by Name and Date of Birth, they can act in one or more movies

and

each actorhasaroleina movie.

iv) Directorsareidentified by Name and Date of Birth, so each Directorcan direct oneor

more movie and each movie can be directed by one or more Directors.

v) EachmoviebelongstoanyonecategorylikeHorror,action,Drama,etc.

26. Design an Entity Relationship (ER) model for a college database . Say we havethe

following statements.

1. Acollegecontainsmanydepartments

2. Eachdepartmentcanofferanynumberofcourses

3. Manyinstructorscanworkinadepartment

4. Aninstructorcanworkonly inone department

5. ForeachdepartmentthereisaHead

6. Aninstructorcanbeheadofonlyone department

7. Eachinstructor cantake anynumberofcourses

8. Acourse canbetaken byonly oneinstructor

9. Astudent can enroll forany numberof courses

10. Eachcoursecan have any numberofstudents

27. Considerthefollowing set ofrequirements fora UNIVERSITYdatabase that isusedto

keep track of students’ transcripts

a. The university keeps track of each student’s name, student number, Social Security

number, current address and phone number, permanent address and phone number, birth

date, sex, class (freshman, sophomore, ..., graduate), major department, minordepartment

DatabaseManagementSystem[21CS53]

Dept.of CSD,ATMECE,Mysuru Page61

(ifany),and degreeprogram (B.A.,B.S., ..., Ph.D.). Someuserapplications need to referto the

city, state, and ZIP Code of the student’s permanent address and to the student’s last name.

Both Social Security number and student number have unique values for each student.

b. Eachdepartmentisdescribedbyaname,departmentcode,officenumber,officephone

number, and college. Both name and code have unique values for eachdepartment.

c. Each course has a course name, description, course number, number of semester hours,

level,andofferingdepartment.Thevalueofthecoursenumberisuniqueforeach course.

d. Eachsectionhasaninstructor,semester,year,course,andsectionnumber. Thesection

number distinguishes sections of the same course that are taught during the same

semester/year;itsvaluesare1,2,3,...,uptothenumberofsectionstaught duringeach

semester.

e. Agrade report hasastudent,section,lettergrade,and numericgrade(0, 1,2, 3,or 4).

DesignanERschemaforthisapplication,anddrawanERdiagramforthe schema.Specify key

attributes of each entity type, and structural constraints on each relationship type. Note any

unspecified requirements, and make appropriate assumptions to make the specification

complete.

28. WriteERdiagramforAirlinereservationandBan database

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page1

Introduction

Module2

Chapter1:TheRelationalDataModel

The relational data model was first introduced by Ted Codd of IBM Research in 1970 in a classic

paper (Codd 1970), and it attracted immediate attention due to its simplicity and mathematical

foundation. The model uses the concept of a mathematical relation—which looks somewhat like a

table of values—as its basic building block, and has its theoretical basis in set theory and first-order

predicate logic.

The first commercial implementations of the relational model became available in the early 1980s,

such as the SQL/DS system on the MVS operating system by IBM and the Oracle DBMS. Sincethen,

the model has been implemented in a large number of commercial systems. Current popular

relational DBMSs (RDBMSs) include DB2 and Informix Dynamic Server (from IBM), Oracle and

Rdb (from Oracle), Sybase DBMS (from Sybase) and SQLServer and Access (from Microsoft). In

addition, several open source systems, such as MySQL and PostgreSQL, are available.

 RelationalModelConcepts

The relational model represents the database as a collection of relations. Informally, each relation

resembles a table of values or, to some extent, a flat file of records. Itis called a flat file becauseeach

record has a simple linear or flat structure.

When a relation is thought of as a table of values, each row in the table represents a collection of

related data values. A row represents a fact that typically corresponds to a real-world entity or

relationship. The table name and column names are used to help to interpret the meaning of the

values in each row.

For example, in STUDENT relation because each row represents facts about a particular student

entity. The column names—Name, Student_number, Class, and Major—specify how to interpret the

datavaluesin each row, based on thecolumn each valueis in. All valuesin acolumn areofthesame data

type.

In the formal relational model terminology, a row is called a tuple, a column header is called an

attribute, and the table is called a relation. The data type describing the types of values that canappear

in each column is represented by a domain of possible values.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page2

 Domains,Attributes,Tuples,andRelations

Domain

A domain D is a set of atomic values. By atomic we mean that each value in the domain is

indivisible as far as the formal relational model is concerned. A common method of specifyinga

domain isto specifyadatatype fromwhich the datavaluesformingthe domain are drawn. It is also

useful to specify a name for the domain, to help in interpreting itsvalues.

Someexamplesofdomains follow:

 Usa_phone_numbers:Thesetoften-digitphonenumbersvalidintheUnitedStates.

 Social_security_numbers:Thesetofvalidnine-digitSocialSecuritynumbers.

 Names:Thesetofcharacterstringsthatrepresentnamesofpersons.

 Employee_ages.Possibleagesofemployeesinacompany;eachmustbeaninteger value

between 15 and 80.

The preceding are called logical definitions of domains. A data type or format is also specified

foreachdomain.Forexample,thedatatypeforthedomainUsa_phone_numberscanbedeclaredasachar

acterstringoftheform(ddd)ddddddd,whereeachdis anumeric(decimal)

digitandthefirstthreedigitsformavalidtelephoneareacode.Thedatatype for

Employee_ages is an integer number between 15 and80.

Attribute

AnattributeAi isthenameofaroleplayedbysomedomainDintherelationschemaR. Dis called the

domain of Ai and is denoted by dom(Ai).

Tuple

Mappingfromattributestovaluesdrawnfromtherespectivedomainsof thoseattributes.Tuples are

intended to describe some entity (or relationship between entities) in the miniworld Example: a

tuple for a PERSON entity might be

{Name -->“smith", Gender-->Male,Age-->25}

Relation

Anamedset oftuples allof thesameform i.e.,having thesame setof attributes.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page3

Relation schema

A relation schema R, denoted by R(A1, A2, ...,An), is made up of a relation name Rand alistof

attributes A1, A2, ...,An. Each attribute Ai is the name of a role played by some domain D in the

relation schema R. D is called the domain of Ai and is denoted by dom(Ai). A relation schema is

used to describe a relation; R is called the name of this relation.

Thedegree(orarity)ofarelationisthenumberofattributesnofitsrelationschema.Arelation of degree

seven, which stores information about university students,would contain seven attributes

describing each student. as follows:

STUDENT(Name,Ssn,Home_phone,Address, Office_phone,Age,Gpa)

Using the data type of each attribute, the definition is sometimes written as:

STUDENT(Name:string,Ssn:string,Home_phone:string,Address:string,

Office_phone: string, Age: integer, Gpa: real)

Domains for some of the attributes of the STUDENT relation:

dom(Name) = Names; dom(Ssn) =Social_security_numbers;

dom(HomePhone)=USA_phone_numbers,dom(Office_phone)=USA_phone_numbers,

Relation(orrelation state)

A relation (or relation state) r of the relation schema by R(A1, A2, ...,An), also denoted by r(R),is

a set of n-tuples r = {t1, t2, ..., tm}. Each n-tuple t is an ordered list of n values t =<v1, v2, ..., vn>,

where each value vi, 1 ≤i<≤n, isan element of dom (Ai) or isa special NULL value. The ith value

in tuple t, which corresponds to the attribute Ai, is referred to as t[Ai] or t. Ai .

The terms relation intension for the schema R and relation extension for a relation state r(R)

are also commonly used.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page4

 CharacteristicsofRelations

1. OrderingofTuples in aRelation

A relation is defined as a set of tuples. Mathematically, elements of a set have no orderamong

them; hence, tuples in a relation do not have any particular order. Tuple ordering isnot part of

a relation definition because a relation attempts to represent facts at a logical or abstract level.

Many tuple orders can be specified on the same relation.

2. OrderingofValueswithin aTupleandanAlternativeDefinition ofaRelation

The order of attributes and their values is not that important as long as the correspondence

between attributes and values is maintained. An alternative definition of a relation can be

given, making the ordering of values in a tuple unnecessary. In this definition A relation

schemaR(A1,A2,...,An),setofattributesanda relationstater(R)isafinitesetofmappings r = {t1,

t2, ..., tm}, where each tuple ti is a mapping from R to D.

According to this definition of tuple as a mapping, a tuple can be considered as a set of

(<attribute>, <value>) pairs, where each pair gives the valueof the mapping from an attribute

Aito a value vi from dom(Ai) .The ordering of attributes is not important, because the attribute

name appears with its value.

3. Valuesand NULLsintheTuples

Each value in a tuple is atomic. NULL values are used to represent the values of attributesthat

may be unknown or may not apply to a tuple. For example some STUDENT tuples have

NULL for their office phones because they do not have an office .Another student has a

NULL for home phone In general, we can have several meanings for NULL values, such as

value unknown, value exists but is not available, or attribute does not apply to this tuple

(also known as value undefined).

4. Interpretation(Meaning)ofaRelation

The relation schema can be interpreted as a declaration or a type of assertion. For example,

the schema of the STUDENT relation of asserts that, ingeneral, a student entity has a Name,

Ssn, Home_phone, Address, Office_phone, Age, and Gpa. Each tuple in the relation can then

be interpreted as a particular instance of the assertion.For example, the first tuple asserts the

fact that there is a STUDENT whose Name is Benjamin Bayer, Ssn is 305-61-2435, Age is

19, and so on.

Analternativeinterpretationofarelationschemaisasa predicate;inthiscase,thevaluesin each

tuple are interpreted as values that satisfy the predicate.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page5

 RelationalModelNotation

 RelationschemaRof degreen isdenotedbyby R(A1,A2,...,An)

 UppercaselettersQ,R,Sdenoterelationnames

 Lowercaselettersq,r,sdenoterelationstates

 Letterst,u, v denotetuples

 Ingeneral,thenameofarelationschemasuchasSTUDENTalsoindicatesthecurrentsetof tuples in

that relation

 AnattributeAcanbequalifiedwiththerelationnameRtowhich itbelongsbyusingthedot notation

R.A—for example, STUDENT.Name or STUDENT.Age.

 An n-tuple t in a relation r(R) is denoted by t = <v1, v2, ..., vn>, where vi is the value

corresponding to attribute Ai. The following notation refers to component values oftuples:

 Botht[Ai]andt.Ai(andsometimest[i])refertothevaluevi intforattributeAi.

 Both t[Au, Aw, ..., Az] and t.(Au, Aw, ..., Az), where Au, Aw, ..., Az is a list of attributes from R,

refer to the subtuple of values <vu, vw, ..., vz> from t corresponding to the attributes specified

in the list.

 RelationalModelConstraintsandRelationalDatabaseSchemas

Constraints are restrictions on the actual values in a database state. These constraints are

derivedfromtherulesintheminiworldthatthedatabaserepresents.Constraintsondatabases can

generally be divided into three main categories:

1. Inherentmodel-basedconstraintsorimplicitconstraints

 Constraintsthatareinherentinthedatamodel.

 The characteristics of relations are the inherent constraints of the relational model and

belong to the first category. For example, the constraint that a relation cannot have

duplicate tuples is an inherent constraint.

2. Schema-basedconstraintsorexplicit constraints

 Constraintsthatcanbedirectlyexpressedinschemasofthedatamodel,typically by

specifying them in the DDL.

 Theschema-basedconstraintsincludedomainconstraints,keyconstraints,constraints on

NULLs, entity integrity constraints, and referential integrityconstraints.

3. Application-basedorsemanticconstraintsorbusinessrules

 Constraintsthatcannotbedirectlyexpressedintheschemasof thedatamodel,and hence

must be expressed and enforced by the application programs.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page6

 Examples of such constraints are the salary of an employee should not exceed the

salary of the employee’s supervisor and the maximum number of hours an employee

can work on all projects per week is56.

 DomainConstraints

DomainConstraintsspecifythatwithineachtuple,thevalueofeachattributeA mustbe an

atomic value from the domain dom(A). The data types associated with domains

typicallyincludestandardnumericdatatypesforintegers(suchasshortinteger,integer, and

long integer) and real numbers (float and doubleprecision float). Characters,

Booleans,fixed-lengthstrings,andvariable-lengthstringsarealsoavailable,asaredate, time,

timestamp, and money, or other special data types.

 KeyConstraintsandConstraintsonNULLValues

All tuples in a relation must also be distinct.This means that no two tuples can have the

same combination of values for all their attributes.There are other subsets of attributes of

a relation schema R with the property that no two tuples in any relation state r of R should

have the same combination of values for these attributes.

Suppose that we denote one such subset of attributes by SK; then for any two distincttuples

t1 and t2 in a relation state r of R, we have the constraint that:t1[SK]≠ t2[SK].such set of

attributes SK is called a superkey of the relation schema R

superkey

A superkey SK specifies a uniqueness constraint that no two distinct tuples in any state r of

R can have the same value for SK. Every relation has at least one default superkey—the set

of all its attributes.

Key

A key K of a relation schema R is a superkey of R with the additional property that

removing any attribute A from K leaves a set of attributes K’ that is not a superkey of R

anymore. Hence, a key satisfies two properties:

1. Two distinct tuples in any state of the relation cannot have identical values for (all) the

attributes in the key. This first property also applies to a superkey.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page7

2. It is a minimal superkey—that is, a superkey from which we cannot remove any

attributes and still have the uniqueness constraint in condition 1 hold.This property is

not required by a superkey.

Example:ConsidertheSTUDENT relation

 Theattributeset{Ssn}isakeyof STUDENTbecausenotwostudenttuplescan have

the same value for Ssn

 AnysetofattributesthatincludesSsn—forexample,{Ssn,Name,Age}—isa

superkey

 Thesuperkey{Ssn,Name,Age}isnotakeyofSTUDENTbecauseremoving Name

or Age or both from the set still leaves us with a superkey

In general, any superkey formed from a single attribute is also a key. A key with multiple

attributes must require all its attributes together to have the uniqueness property.

Candidate key

A relation schema may have more than one key. In this case, each of the keys is called a

candidate key. For example, the CAR relation has two candidate keys: License_number and

Engine_serial_number

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page8

Primarykey

It iscommon to designate one of the candidate keys as the primary key of the relation. This is

the candidate key whose values are used to identify tuples in the relation.We use the

convention that the attributes that form the primary key of a relation schema are underlined.

Other candidate keys are designated as unique keys and are not underlined

Another constraint on attributes specifies whether NULL values are or are not permitted. For

example, if every STUDENT tuple must have a valid, non-NULL value for the Name attribute, then

Name of STUDENT is constrained to be NOT NULL.

 RelationalDatabasesandRelationalDatabaseSchemas

ARelationaldatabaseschemaSisasetofrelationschemasS={R1,R2,...,Rm}andaset of integrity

constraints IC.

Exampleofrelationaldatabase schema:

COMPANY={EMPLOYEE,DEPARTMENT,DEPT_LOCATIONS,PROJECT,

WORKS_ON, DEPENDENT}

Figure1.2.3(a):Schema diagramfortheCOMPANYrelationaldatabaseschema.

Theunderlined attributesrepresentprimarykeys

ARelational databasestateisa setofrelationstatesDB={r1, r2,..., rm}.Eachriisa stateof

Randsuchthattheri relationstatessatisfyintegrityconstraintsspecifiedinIC.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page9

Figure1.2.3(b):OnepossibledatabasestatefortheCOMPANYrelationaldatabaseschema.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page10

A database state that does not obey all the integrity constraints is called Invalid state and a state that

satisfies all the constraints in the defined set of integrity constraints IC is called a Valid state

Attributes that represent the same real-world concept may or may not have identical names in

different relations. For example, the Dnumber attribute in both DEPARTMENT and

DEPT_LOCATIONS stands for the same real-world concept—the number given to a department.

That same concept is called Dno in EMPLOYEE and Dnum in PROJECT.

Alternatively, attributes that represent different concepts may have the same name in different

relations. For example, we could have used the attribute name Name for both Pname of PROJECT

and Dname of DEPARTMENT; in this case, we would have two attributes that share the same name

but represent different realworld concepts—project names and department names.

Integrity,ReferentialIntegrity,andForeignKeys Entity

integrity constraint

The entity integrity constraint states that no primary key value can be NULL. This is because the

primary key value is used to identify individual tuples in a relation. Having NULL values for the

primary key implies that we cannot identify some tuples. For example, if two or more tuples had

NULL for their primary keys, we may not be able to distinguish them if we try to reference them

from other relations.

Keyconstraintsandentityintegrityconstraintsarespecifiedonindividualrelations.

Referentialintegrityconstraint

The referential integrity constraint is specified between two relations and is used to maintain the

consistency among tuples in the two relations. Informally, the referential integrity constraint states

that a tuple in one relation that refers to another relation must refer to an existing tuple in thatrelation.

For example COMPANY database, the attribute Dno of EMPLOYEE gives the department number

for which each employee works; hence, its value in every EMPLOYEE tuple must match the

Dnumber value of some tuple in the DEPARTMENT relation.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page11

To define referential integrity more formally, first we define the concept of a foreign key. The

conditions for a foreign key, given below, specify a referential integrity constraint between the two

relation schemas R1 and R2.

A set of attributes FK in relation schema R1 is a foreign key of R1 that references relation R2 if it

satisfies the following rules:

1. AttributesinFKhavethesamedomain(s)astheprimarykeyattributesPK of R2;the

attributes FK are said to reference or refer to the relation R2.

2. AvalueofFK inatuple t1 ofthecurrent state r1(R1)eitheroccursas avalue ofPKfor some

tuple t2 in the current state r2(R2) or is NULL.

In the former case, we have t1[FK] = t2[PK], and we say that the tuple t1 references or refers to the

tuple t2.

In this definition, R1is called the referencing relation and R2is the referenced relation. If these two

conditions hold, a referential integrity constraint from R1 to R2 issaid tohold.

OtherTypesofConstraints

Semantic integrity constraints

Semantic integrity constraints can be specified and enforced within the application programs that

update the database, or by using a general-purpose constraint specification language. Examples of

such constraints are the salary of an employee should not exceed the salary of the employee’s

supervisorandthemaximumnumberofhoursan employeecanworkonallprojectsperweekis56.

Mechanisms called triggers and assertions can be used. In SQL, CREATE ASSERTION and

CREATE TRIGGER statements can be used for this purpose.

Functionaldependencyconstraint

FunctionaldependencyconstraintestablishesafunctionalrelationshipamongtwosetsofattributesX and Y.

This constraint specifies that the value of X determines a unique value of Y in all states of a relation;

itisdenoted as a functional dependency X → Y. We use functional dependencies and other types of

dependencies as tools to analyze the quality of relational designs and to “normalize”relations to

improve their quality.

Stateconstraints(static constraints)

Definethe constraints thatavalid stateofthe databasemust satisfy

Transitionconstraints(dynamic constraints)

Definetodealwith state changesinthedatabase

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page12

 UpdateOperations,Transactions,andDealingwithConstraintViolations

Theoperationsofthe relationalmodelcan becategorizedinto retrievalsandupdates

Therearethreebasic operationsthatcan changethestates ofrelationsinthedatabase:

1. Insert-usedtoinsertoneormorenewtuplesinarelation

2. Delete-usedtodeletetuples

3. Update (or Modify)- used to change the values of some attributes in existing

tuplesWhenevertheseoperationsareapplied,theintegrityconstraintsspecifiedontherelationaldatabase

schema should not be violated.

 TheInsertOperation

TheInsertoperationprovidesalistofattributevaluesforanewtupletthat istobeinsertedintoa elation R. Insert

can violate any of the four types of constraints

1. Domainconstraints:ifanattributevalueisgiventhatdoesnotappearinthecorresponding domain

or is not of the appropriate data type

2. Keyconstraints:ifakeyvalueinthenewtupletalreadyexistsinanothertupleinthe relation

r(R)

3. Entityintegrity:ifanypartoftheprimarykeyof thenewtuple tisNULL

4. Referentialintegrity:ifthevalueofanyforeignkeyintrefersto atuplethatdoesnotexist in the

referenced relation

Examples:

1. Operation:

Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, NULL, ‘1960-04-05’, ‘6357 Windy Lane,Katy,TX’,

F, 28000, NULL, 4>

Result:Thisinsertionviolatestheentityintegrityconstraint(NULLfortheprimarykey Ssn),

so it is rejected

2. Operation:

Insert<‘Alicia’,‘J’,‘Zelaya’,‘999887777’,‘1960-04-05’,‘6357WindyLane,Katy,TX’, F,

28000, ‘987654321’, 4>

Result:ThisinsertionviolatesthekeyconstraintbecauseanothertuplewiththesameSsn value

already exists in the EMPLOYEE relation, and so it is rejected.

3. Operation:

Insert<‘Cecilia’,‘F’,‘Kolonsky’,‘677678989’,‘1960-04-05’,‘6357 Windswept, Katy,

TX’,F,28000,‘987654321’,7>

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page13

Result: This insertion violates the referential integrity constraint specified on Dno in

EMPLOYEEbecausenocorrespondingreferencedtupleexistsinDEPARTMENT with

Dnumber = 7.

4. Operation:

Insert<‘Cecilia’,‘F’,‘Kolonsky’,‘677678989’, ‘1960-04-05’,‘6357 Windy Lane,Katy,

TX’,F,28000,NULL,4>

Result:Thisinsertionsatisfiesallconstraints,soitisacceptable.

If an insertion violates one or more constraints, the default optionis to reject the insertion.It wouldbe

useful if the DBMS could provide a reason to the user as to why the insertion was rejected. Another

option is to an attempt to correct the reason for rejecting the insertion

 TheDeleteOperation

The Delete operation can violate only referential integrity. This occurs if the tuple being deleted is

referenced by foreign keys from other tuples in the database. To specify deletion, a condition on the

attributes of the relation selects the tuple (or tuples) to be deleted.

Examples:

1. Operation:

DeletetheWORKS_ONtuplewithEssn=‘999887777’andPno=10. Result:

This deletion is acceptable and deletes exactly one tuple.

2. Operation:

DeletetheEMPLOYEEtuplewithSsn= ‘999887777’.

Result:Thisdeletionisnotacceptable,becausetherearetuplesinWORKS_ONthatrefer to this

tuple. Hence, if the tuple in EMPLOYEE is deleted, referential integrity violations

will result.

3. Operation:

DeletetheEMPLOYEEtuplewithSsn= ‘333445555’

Result:Thisdeletionwillresultinevenworsereferentialintegrity violations,becausethe tuple

involved is referenced by tuples from the EMPLOYEE, DEPARTMENT,

WORKS_ON, and DEPENDENT relations.

Severaloptionsare availableifadeletionoperationcausesaviolation

1. restrict-istorejectthedeletion

2. cascade,isto attempttocascade(orpropagate)thedeletionbydeletingtuplesthatreference the

tuple that is being deleted

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page14

3. Setnullorsetdefault-istomodifythereferencingattributevaluesthatcausetheviolation; each

such value is either set to NULL or changed to reference another default valid tuple.

 TheUpdateOperation

The Update (or Modify)operation isusedto change the values of one or moreattributes ina tuple

(ortuples) ofsome relation R. It isnecessarytospecifyaconditiononthe attributesofthe relation to

select the tuple (or tuples) to be modified.

Examples:

1. Operation:

UpdatethesalaryoftheEMPLOYEEtuplewithSsn=‘999887777’to28000. Result:

Acceptable.

2. Operation:

UpdatetheDnooftheEMPLOYEEtuplewithSsn=‘999887777’to7. Result:

Unacceptable, because it violates referential integrity.

3. Operation:

Update the Ssn of the EMPLOYEE tuple with Ssn = ‘999887777’ to ‘987654321’.

Result:Unacceptable,becauseitviolatesprimarykeyconstraintbyrepeatingavalue that

already exists as a primary key in another tuple; it violates referential integrity

constraints because there are other relations that refer to the existing value of Ssn

Updating an attribute that is neither part of a primary key nor of a foreign key usually causes no

problems; the DBMS need only check to confirm that the new value is of the correct data type and

domain.

 TheTransactionConcept

A transaction isan executing program that includes some database operations, such as reading from

the database, or applying insertions, deletions, or updates to the database. At the end of the

transaction, it must leave the database in a valid or consistent state that satisfies all the constraints

specified on the database schema A single transaction may involve any number of retrievaloperations

and any number of update operations. These retrievals and updates will together form an atomic unit

of work against the database.For example, a transaction to apply a bank withdrawal will typically

read the user account record, check if there is a sufficient balance, and then update the record by the

withdrawal amount.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page15

 Introduction

Chapter2:RelationalAlgebra

Relational algebra is the basic set of operations for the relational model. These operations enable a

user to specify basic retrieval requests as relational algebra expressions. The result of an operation is

a new relation, which may have been formed from one or more input relations.

Therelational algebraisveryimportant forseveral reasons

 First,itprovidesaformalfoundationforrelationalmodeloperations.

 Second, and perhaps more important, it is used as a basis for implementing and optimizing

queriesin the query processing and optimization modulesthat are integral parts of

relational database management systems (RDBMSs)

 Third, some of its concepts are incorporated into the SQL standard query language for

RDBMSs

 UnaryRelationalOperations:SELECTandPROJECT

 TheSELECTOperation

The SELECT operation denoted by σ (sigma) is used to select a subset of the tuples from a relation

based on a selection condition. The selection condition acts as a filter that keeps only those tuplesthat

satisfy a qualifying condition. Alternatively, we can consider the SELECT operation to restrict the

tuples in a relation to only those tuples that satisfy thecondition.

The SELECT operation can also be visualized as a horizontal partition of the relation into two setsof

tuples—those tuples that satisfy the condition and are selected, and those tuples that donot satisfy the

condition and are discarded.

Ingeneral,theselectoperationisdenotedby

o<selection condition>(R)

where,

- thesymbolσisusedtodenotethe selectoperator

- theselectionconditionisaBoolean(conditional)expressionspecifiedontheattributesof

relation R

- tuplesthat makethe conditiontrueareselected

🞄appearintheresultoftheoperation

- tuplesthatmaketheconditionfalsearefilteredout

🞄discarded fromtheresultofthe operation

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page16

TheBooleanexpressionspecifiedin<selectioncondition>ismadeupofanumberofclausesofthe form:

where

<attributename><comparisonop><constant value>

or

<attributename><comparison op><attributename>

<attributename>is thename ofanattributeof R,

<comparisonop>isone of theoperators{=,<, ≤,>,≥,≠}, and

<constantvalue>is aconstantvalue fromtheattribute domain

ClausescanbeconnectedbythestandardBooleanoperatorsand,or,and nottoformageneral selection

condition

Examples:

1. SelecttheEMPLOYEEtupleswhosedepartmentnumberis4.

o DNO=4(EMPLOYEE)

2. Selecttheemployeetupleswhosesalary isgreater than$30,000.

o SALARY>30,000(EMPLOYEE)

3. Selectthetuplesforallemployeeswhoeitherworkindepartment4andmakeover$25,000 per

year, or work in department 5 and make over$30,000

σ(Dno=4ANDSalary>25000)OR(Dno=5ANDSalary>30000)(EMPLOYEE)

TheresultofaSELECT operationcan bedeterminedas follows:

• The<selectioncondition> isappliedindependently toeachindividualtupletinR

• IftheconditionevaluatestoTRUE,thentupletisselected.Alltheselectedtuplesappearin the

result of the SELECT operation

• TheBoolean conditionsAND, OR,andNOT havetheirnormalinterpretation, asfollows:

- (cond1ANDcond2)isTRUEifboth(cond1)and(cond2)areTRUE;otherwise,itis

FALSE.

- (cond1ORcond2)isTRUEifeither(cond1)or(cond2)orbothareTRUE;otherwise,itis FALSE.

- (NOTcond)isTRUEifcondisFALSE;otherwise,itisFALSE.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page17

The SELECT operator is unary; that is, it is applied to a single relation. The degree of the relation

resulting from a SELECT operation is the same as the degree of R.The number of tuples in the

resulting relation is always less than or equal to the number of tuples in R. That is,

|σc (R)|≤|R|foranycondition C

The fraction of tuples selected by a selection condition is referred to as the selectivity of the

condition.

TheSELECT operationis commutative;that is,

σ<cond1>(σ<cond2>(R))=σ<cond2>(σ<cond1>(R))

Hence, a sequence of SELECTs can be applied in any order.we can always combine a cascade (or

sequence) of SELECT operations into a single SELECT operation with a conjunctive (AND)

condition; that is,

σ<cond1>(σ<cond2>(...(σ<condn>(R)) ...)) = σ<cond1>AND<cond2>AND ...AND<condn>(R)

In SQL, the SELECT condition is specified in the WHERE clause of a query.For example, the

following operation:

σDno=4ANDSalary>25000(EMPLOYEE)

would to thefollowing SQLquery:

SELECT*FROMEMPLOYEEWHEREDno=4ANDSalary>25000;

 ThePROJECT Operation

The PROJECT operation denoted by π (pi) selects certain columns from the table and discards the

othercolumns.Usedwhenweareinterestedinonlycertainattributesofarelation.Theresultofthe PROJECT

operation can be visualized as a vertical partition of the relation into two relations:

- onehasthe neededcolumns(attributes) andcontainstheresultoftheoperation

- theothercontainsthediscardedcolumns

The general form of the PROJECT operation is

π<attribute list>(R)

where

π(pi)-symbolused to representthePROJECT operation,

<attributelist> -desiredsublistofattributesfromtheattributesofrelation R.

TheresultofthePROJECToperationhasonlytheattributesspecifiedin<attributelist> inthesame order as

they appear in the list. Hence, its degree is equal to the number of attributes in <attribute list>

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page18

Example:

1. Tolisteachemployee’sfirstandlastnameand salarywecanusethePROJECToperationas follows:

πLname,Fname,Salary(EMPLOYEE)

IftheattributelistincludesonlynonkeyattributesofR,duplicatetuplesarelikelyto occur. The result

of the PROJECT operation is a set of distinct tuples, and hence a valid relation. This is known

as duplicate elimination.For example, consider the following PROJECT operation:

πgender,Salary(EMPLOYEE)

Thetuple<‘F’,25000>appearsonlyonceinresultingrelationeventhough thiscombinationof values

appears twice in the EMPLOYEE relation.

Thenumberoftuplesin arelationresultingfromaPROJECToperationisalwayslessthanorequal to the

number of tuples in R. Commutativity does not hold on PROJECT

π<list1>(π<list2>(R))= π<list1>(R)

aslongas<list2>containstheattributesin<list1>;otherwise,theleft-handsideisanincorrect expression.

InSQL,thePROJECTattributelistisspecifiedintheSELECTclauseofaquery.Forexample,the following

operation:

πgender,Salary(EMPLOYEE)

wouldcorrespondto the followingSQLquery:

SELECTDISTINCTgender,SalaryFROMEMPLOYEE

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page19

 SequencesofOperationsandtheRENAMEOperation

For most queries, we need to apply several relational algebra operations one after the other. Either

we can write the operations as a single relational algebra expression by nesting the operations, or we

can apply one operation at a time and create intermediate result relations. In the latter case, we must

give names to the relations that hold the intermediate results.

For example, to retrieve the first name, last name, and salary of all employees who work in

department number 5, we must apply a SELECT and a PROJECT operation. We can write a single

relational algebra expression, also known as an in-line expression, as follows:

πFname,Lname,Salary(σDno=5(EMPLOYEE))

Alternatively, we can explicitly showthe sequence of operations, giving aname to each intermediate

relation, as follows:

DEP5_EMPS←σ Dno=5(EMPLOYEE)

RESULT←πFname,Lname,Salary(DEP5_EMPS)

We can also use this technique to rename the attributes in the intermediate and result relations. To

rename the attributes in a relation, we simply list the new attribute names in parentheses

TEMP← σDno=5(EMPLOYEE)

R(First_name,Last_name,Salary)←πFname,Lname, Salary(TEMP)

Ifno renaming is applied, the names of the attributes in the resulting relation of a SELECT operation

arethesameasthosein theoriginalrelationandinthesame order.ForaPROJECToperationwith no

renaming, the resulting relation has the same attribute names as those in the projection list and in the

same order in which they appear in the list.

We can also define a formal RENAME operation—which can rename either the relation name or the

attribute names, or both—as a unary operator.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page20

ThegeneralRENAMEoperationwhen appliedtoarelation Rofdegreenisdenotedbyanyofthe following

three forms:

1. ρS(B1,B2,...,Bn)(R) ρ(rho)–RENAMEoperator

2. ρS(R) S–newrelationname

3. ρ(B1,B2,…….Bn)(R) B1,B2,…..Bn-newattributenames

The first expression renames both the relation and its attributes. Second renames the relation only

andthethirdrenamestheattributesonly.IftheattributesofRare(A1,A2,...,An)inthatorder,then each Ai is

renamed as Bi.

RenaminginSQLisaccomplishedbyaliasingusingAS,asinthefollowingexample: SELECT

E.Fname AS First_name,

E.Lname AS Last_name,

E.Salary ASSalary

FROMEMPLOYEEASE

WHERE E.Dno=5,

 RelationalAlgebraOperationsfromSetTheory

 TheUNION,INTERSECTION,and MINUSOperations

 UNION:Theresultofthisoperation,denotedby R∪S,isarelationthatincludesalltuples that are

either in R or in S or in both R and S. Duplicate tuples areeliminated.

 INTERSECTION:Theresultofthisoperation,denotedbyR∩S,isarelationthatincludes all

tuples that are in both R and S.

 SETDIFFERENCE(orMINUS):Theresultofthisoperation,denotedby R–S,isa relation

that includes all tuples that are in R but not in S.

Example:Considerthethefollowing tworelations: STUDENT&INSTRUCTOR

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru

STUDENT∪INSTRUCTOR STUDENT∩INSTRUCTOR

STUDENT– INSTRUCTOR INSTRUCTOR− STUDENT

Example:ToretrievetheSocialSecuritynumbersofall employeeswhoeitherworkindepartment5 or

directly supervise an employee who works in department 5

DEP5_EMPS←σDno=5(EMPLOYEE)

RESULT1 ← πSsn(DEP5_EMPS)

RESULT2(Ssn)←πSuper_ssn(DEP5_EMPS)

RESULT ← RESULT1 ∪ RESULT2

Page21

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page22

Singlerelationalalgebra expression:

Result←πSsn(σDno=5 (EMPLOYEE))∪πSuper_ssn(σDno=5(EMPLOYEE))

UNION, INTERSECTION and SET DIFFERENCE are binary operations; that is, each is applied to

two sets (of tuples). When these operations are adapted to relational databases, the two relations on

which any of these three operations are applied must have the same type of tuples; this condition has

been called union compatibility or type compatibility.

Two relations R(A1, A2, ..., An) and S(B1, B2, ..., Bn) are said to be union compatible (or type

compatible) if they have the same degree n and if dom(Ai) = dom(Bi) for 1 ≤ i ≤ n.This means thatthe

two relations have the same number of attributes and each corresponding pair of attributes hasthe

same domain.

BothUNIONand INTERSECTIONarecommutativeoperations;thatis,

R∪S =S ∪R and R∩S=S ∩R

BothUNIONandINTERSECTIONcanbetreatedasn-aryoperationsapplicabletoanynumberof relations

because both are also associative operations; thatis,

R∪(S∪T)=(R ∪S)∪Tand(R∩S)∩T=R ∩ (S∩T) The MINUS

operation is not commutative; that is, in general,

R−S ≠ S −R

INTERSECTIONcanbeexpressedintermsofunionandsetdifferenceasfollows: R ∩ S

= ((R ∪ S) − (R − S)) − (S − R)

InSQL,therearethreeoperations—UNION,INTERSECT,andEXCEPT—thatcorrespondtothe set

operations

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page23

 TheCARTESIANPRODUCT(CROSSPRODUCT)Operation

The CARTESIAN PRODUCT operation—also known as CROSS PRODUCT or CROSS JOIN

denoted by × is a binary set operation, but the relations on whichit is applied do not have tobe union

compatible. This set operation produces a new element by combining every member (tuple) from one

relation (set) with every member (tuple) from the other relation (set)

In general, the result of R(A1, A2, ..., An) × S(B1, B2, ..., Bm) is a relation Q with degree n + mattributes

Q(A1, A2, ..., An, B1, B2, ..., Bm), in that order. The resulting relation Q has one tuple foreach

combination of tuples—one from R and one from S. Hence, if R has nR tuples (denoted as |R| = nR),

and S has nS tuples, then R × S will have nR * nS tuples

Example:supposethatwewanttoretrieve alistofnamesofeachfemaleemployee’sdependents.

FEMALE_EMPS←σgender=‘F’(EMPLOYEE)

EMPNAMES ← πFname, Lname, Ssn(FEMALE_EMPS)

EMP_DEPENDENTS ← EMPNAMES × DEPENDENT

ACTUAL_DEPENDENTS←σSsn=Essn(EMP_DEPENDENTS)

RESULT←πFname,Lname,Dependent_name(ACTUAL_DEPENDENTS)

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page24

TheCARTESIANPRODUCTcreatestupleswiththecombinedattributesoftwo relations.We can

SELECT related tuples only from the two relations by specifying an appropriate selection

condition after the Cartesian product.

InSQL,CARTESIANPRODUCTcanberealizedbyusingtheCROSSJOINoptioninjoined tables

 BinaryRelationalOperations:JOINandDIVISION

 TheJOIN Operation

TheJOIN operation, denoted by isused to combine related tuples from two relations into

single“longer”tuples.It allowsus to process relationships among relations.Thegeneral form of a

JOIN operation on two relations R(A1, A2, ..., An) andS(B1, B2, ..., Bm) is

R <joinconditio>S

Example:Retrievethe nameofthemanager ofeach department.

Togetthemanager’sname, weneedto combineeachdepartmenttuplewiththeemployeetuple whose

Ssn value matches the Mgr_ssn value in the department tuple

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page25

The result of the JOIN is a relation Q with n + m attributes Q(A1, A2, ..., An,B1, B2, ..., Bm in that

order.Qhas onetuplefor each combination oftuples—onefrom R and one from S—wheneverthe

combination satisfies the join condition. This is the main difference between CARTESIAN

PRODUCT and JOIN. In JOIN, only combinations of tuples satisfying the join condition appearin

the result, whereas in the CARTESIAN PRODUCT all combinations of tuples are included in the

result. The join condition is specified on attributes from the two relations R and S and is evaluated

for each combination of tuples.

EachtuplecombinationforwhichthejoinconditionevaluatestoTRUE isincludedintheresulting relation

Q as a single combined tuple. A general join condition is of the form

<condition>AND<condition>AND...AND<condition>

where each <condition> is of the form Aiθ Bj, Ai is an attribute of R, B isan attribute of S, Ai

andBj havethesamedomain,andθ(theta)isoneofthecomparisonoperators{=, <,≤,>,≥,≠}.A JOIN

operation with such a general join condition is called a THETA JOIN. Tuples whose join

attributes are NULL or for which the join condition is FALSE do not appear in the result.

 VariationsofJOIN:TheEQUIJOINand NATURALJOIN

The most common use of JOIN involves join conditions with equality comparisons only. Such a

JOIN, where the only comparison operator used is =, is called an EQUIJOIN.In the result of an

EQUIJOIN we always have one or more pairs of attributes that have identical values in every tuple.

For example the values of the attributes Mgr_ssn and Ssn are identical in every tuple of

DEPT_MGR (the EQUIJOIN result) because the equality join condition specified on these two

attributes requires the values to be identical in every tuple in the result.

The standard definition of NATURAL JOIN requires that the two join attributes (or each pair ofjoin

attributes) have the same name in both relations. If this is not the case, a renaming operation is

applied first. Suppose we want to combine each PROJECT tuple with the DEPARTMENT tuple that

controls the project.first we rename the Dnumber attribute of DEPARTMENT to Dnum—so that it

has the same name as the Dnum attribute in PROJECT—and then we apply NATURAL JOIN:

PROJ_DEPT←PROJECT*ρ(Dname,Dnum,Mgr_ssn,Mgr_start_date)(DEPARTMENT)

Thesame querycan bedoneintwo stepsby creatingan intermediatetableDEPTas follows:

DEPT←ρ(Dname,Dnum,Mgr_ssn,Mgr_start_date)(DEPARTMENT)

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page26

PROJ_DEPT← PROJECT* DEPT

TheattributeDnum iscalledthejoinattributefortheNATURALJOINoperation,because itisthe only

attribute with the same name in both relations.

If the attributes on which the natural join is specified already have the same names in both relations,

renaming is unnecessary. For example, to apply a natural join on the Dnumber attributes of

DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write

DEPT_LOCS←DEPARTMENT* DEPT_LOCATIONS

In general, the join condition for NATURAL JOIN is constructed by equating each pair of join

attributes that have the same name in the two relations and combining these conditions

withAND.Ifnocombinationoftuples satisfies thejoincondition, theresultofa JOIN isan empty relation

with zero tuples.

Amoregeneral,butnonstandarddefinitionforNATURALJOIN is

where,

<list1>:listofiattributesfrom R,

<list2>:listofiattributesfrom S

The lists are used to form equality comparison conditions between pairs of corresponding attributes

and thentheconditions arethenANDed together. Only thelist corresponding to attributes ofthefirst

relation R—<list1>— is kept in the result Q.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page27

In general, ifR has nRtuplesand S has nStuples, theresult of aJOINoperation R <join condition>S will

have between zero and nR * nS tuples. The expected size of the join result divided by the maximum

size nR * nSleads to a ratio called join selectivity, which is a property of each join condition. If there

is no join condition, all combinations of tuples qualify and the JOIN degenerates into a CARTESIAN

PRODUCT, also called CROSS PRODUCT or CROSS JOIN.

A single JOIN operation is used to combine data from two relations so that related information can

be presented in a single table. These operations are also known as inner joins. Informally, an inner

join is a type of match and combine operation defined formally as a combination of CARTESIAN

PRODUCT and SELECTION.The NATURAL JOIN or EQUIJOIN operation can also be specified

amongmultipletables,leading to ann-wayjoin.Forexample,considerthe followingthree-wayjoin:

This combines each project tuple with its controlling department tuple into a single tuple, and then

combines that tuple with an employee tuple that is the department manager. The net result is a

consolidated relation in which each tuple contains this project-department-manager combined

information.

InSQL,JOINcanberealizedinseveraldifferentways

-Thefirstmethodistospecifythe<joinconditions>intheWHEREclause,alongwithany other

selection conditions.

- Thesecondwayistouseanestedrelation

- Anotherwayistousetheconceptofjoinedtables

 ACompleteSetofRelationalAlgebraOperations

Thesetofrelationalalgebraoperations{σ,π,∪,ρ,–,×}isacompleteset; thatis,anyoftheother original

relational algebra operations can be expressed as a sequence of operations from this set. For

example, the INTERSECTION operation can be expressed by using UNION and MINUS as

follows:

R∩S ≡(R ∪S)– ((R– S)∪(S – R))

Asanotherexample, aJOINoperationcanbespecifiedasaCARTESIANPRODUCTfollowedbya

SELECT operation,

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page28

Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by

RENAME and followed by SELECT and PROJECT operations. Hence, the various JOIN operations

are also not strictly necessary for the expressive power of the relational algebra.

 TheDIVISIONOperation

The DIVISION operation, denoted by ÷, is useful for a special kind of query that sometimes occursin

database applications. An example is Retrieve the names of employees who work on all the projects

that ‘John Smith’ works on. To express this query using the DIVISION operation, proceedas follows.

• First,retrievethelistofprojectnumbersthat‘JohnSmith’worksonintheintermediate relation

SMITH_PNOS:

• Next,createarelationthatincludesatuple<Pno, Essn>whenevertheemployeewhoseSsnis Essn

works on the project whose number is Pno in the intermediate relation SSN_PNOS:

• Finally,applytheDIVISIONoperationtothetworelations,whichgivesthedesired

employees’ Social Security numbers:

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page29

In general, the DIVISION operation is applied to two relations R(Z) ÷ S(X), where the attributes ofR

are a subset of the attributes of S; that is, X ⊆ Z.Let Y be the set of attributes of R that are not

attributes of S; that is,Y = Z – X (and hence Z = X ∪ Y). The result of DIVISION is a relation T(Y)

that includes a tuple t iftuples tR appear inR with tR [Y] = t, and with tR [X] = tS for every tuple tSin

S.This means that,foratupletto appear in theresult T oft

Figurebelowillustrates aDIVISIONoperation where X={A},Y={B},andZ ={A, B}.

The tuples (values) b1 and b4 appear in R in combination with all three tuples in S; that is why they

appear in the resulting relation T. All other values of B in R do not appear with all the tuples in S and

are not selected: b2 does not appear with a2, and b3 does not appear with a1.

TheDIVISIONoperationcanbe expressedasasequenceofπ,×,and–operationsas follows:

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page30

 NotationforQueryTrees

Query tree (query evaluation tree or query execution tree) is used in relational systems to represent

queries internally. A query tree is a tree data structure that corresponds to a relational algebra

expression. It represents the input relations of the query as leaf nodes of the tree, and represents the

relational algebra operations as internal nodes.

An execution of the query tree consists of executing an internal node operation whenever itsoperands

represented by its child nodes are available, and then replacing that internal node by the relation that

results from executing the operation. The execution terminates when the root node is executed and

produces the result relation for the query.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page31

Example: For every project located in ‘Stafford’, list the project number, the controlling department

number, and the department manager’s last name, address, and birth date.

LeafnodesP,D,andErepresentthethreerelationsPROJECT,DEPARTMENT,andEMPLOYEE.

Therelational algebraoperations inthe expression arerepresented by internal treenodes. Thequery tree

signifies an explicit order of execution inthe following sense. The node marked (1) mustbegin

execution before node (2) because some resulting tuples of operation (1) mustbeavailable before

wecanbeginto executeoperation(2).Similarly,node(2)mustbegintoexecuteandproduceresults before

node (3) can start execution, and so on.

A query tree gives a good visual representation and understanding of the query in terms of the

relational operations it uses and is recommended as an additional means for expressing queries in

relational algebra.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page32

 AdditionalRelationalOperations

 GeneralizedProjection

Thegeneralizedprojectionoperationextendstheprojectionoperationbyallowingfunctionsof attributes

to be included in the projection list. The generalized form can be expressed as:

πF1,F2,..., Fn(R)

whereF1,F2,...,Fn arefunctionsovertheattributesinrelationRandmayinvolvearithmetic operations and

constant values.

The generalized projection helpful when developing reports where computed values have to be

producedinthecolumnsofaqueryresult.Forexample,considertherelationEMPLOYEE(Ssn,

Salary,Deduction, Years_service). A report may be required to show

Net Salary = Salary – Deduction,

Bonus=2000*Years_service,and Tax

= 0.25 * Salary.

generalizedprojectioncombinedwithrenaming:

REPORT←ρ(Ssn,Net_salary,Bonus,Tax)(πSsn,Salary–Deduction,2000* Years_service,

0.25 * Salary(EMPLOYEE)).

 AggregateFunctionsandGrouping

Aggregate functions are used in simple statistical queries that summarize information from the

database tuples.Common functions applied to collections of numeric values include

SUM,AVERAGE, MAXIMUM, and MINIMUM.The COUNT function is used for counting tuplesor

values. For example, retrieving the average or total salary of all employees or the total number of

employee tuples.

Grouping the tuples in a relation by the value of some of their attributes and then applying an

aggregatefunctionindependentlytoeachgroup.Forexample,groupEMPLOYEEtuplesbyDno,so that

each group includes the tuples for employees working in the same department. We can then list each

Dno value along with, say, the average salary of employees within the department, or the number of

employees who work in the department.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page33

Aggregate functionoperationcanbedefinedbyusingthesymbolℑ(scriptF) :

<groupingattributes>ℑ<functionlist>(R)

Where,

<groupingattributes>:list ofattributesoftherelationspecifiedinR

<functionlist>:listof(<function><attribute>)pairs.

<function>-suchas SUM,AVERAGE,MAXIMUM, MINIMUM,COUNT

<attribute>isan attributeof therelationspecifiedby R

Theresultingrelationhasthegroupingattributesplusoneattributeforeachelementinthefunction list.

Example:Toretrieveeachdepartmentnumber,thenumberofemployees inthedepartment,and their

average salary, while renaming the resulting attributes

ρR(Dno,No_of_employees,Average_sal)(DnoℑCOUNTSsn,AVERAGESalary(EMPLOYEE))

 RecursiveClosureOperations

Recursive closure operation is applied to a recursive relationship between tuples of the same type,

such as the relationship between an employee and a supervisor.

Example : Retrieve all supervisees of an employee e at all levels—that is, all employees e’ directly

supervised by e, all employees e’ℑ directly supervised by each employee e’, all employees e’’’

directly supervised by each employee e’’ and so on.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page34

•

•

•

To retrieve all employees supervised by Borg at level 2—that is, all employees e’’ supervised by

some employee e’ who is directly supervised by Borg—we can apply another JOIN to the result

of the first query, as follows:

Togetbothsetsofemployeessupervisedatlevels1and2by‘JamesBorg’,wecanapplythe UNION

operation to the two results, as follows:

 OUTERJOINOperations

The JOIN operations match tuples that satisfy the join condition. For example, for a NATURAL

JOIN operation R * S, only tuples from R that have matching tuples in S—and vice versa—

appear in the result. Hence, tuples without a matching (or related) tuple are eliminated from the

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page35

JOIN result. Tuples with NULL values in the join attributes are also eliminated.This type of join,

where tuples with no match are eliminated, is known as an inner join.

A set of operations, called outer joins, were developed for the case where the user wants to keep

all the tuples in R, or all those in S, or all those in both relations in the result of the JOIN,

regardless of whether or not they have matching tuples in the other relation.

For example, suppose that we want a list of all employee names as well as the name of the

departments they manage if they happen to manage a department; if they do not manage one, we

can indicate it with a NULL value. We can apply an operation LEFT OUTER JOIN, denoted by

 toretrievetheresultasfollows:

TheLEFT OUTERJOIN operationkeepseverytupleinthefirst,orleft,relationR in

R S;ifnomatchingtupleisfoundinS,thentheattributesofSinthejoinresultare filled or

padded with NULL values.

A similar operation, RIGHT OUTER JOIN, denoted by keeps every tuplein the second, or

right, relation S in the resultof R S.

Athirdoperation,FULLOUTERJOIN,denotedby , keeps all tuples in both the left

andtherightrelationswhen nomatchingtuplesarefound,paddingthemwithNULLvaluesas needed.

 TheOUTER UNIONOperation

The OUTER UNION operation was developed to take the union of tuples from two

relationsthathave some common attributes,butare notunion (type)compatible.Thisoperation will

take

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page36

the UNION of tuples in two relations R(X, Y) and S(X, Z) that are partially compatible,

meaning that only some of their attributes, say X, are union compatible.

The attributes that are union compatible are represented only once in the result, and those

attributes that are not union compatible from either relation are also kept in the result relation

T(X, Y, Z). Two tuples t1in R and t2in S are said to match if t1[X]= t2[X]. These willbe combined

(unioned) into a single tuple in t. Tuples in either relation that have no matching tuple in the other

relation are padded with NULL values.

Forexample,anOUTER UNIONcan beapplied to tworelationswhoseschemasare:

STUDENT(Name, Ssn, Department, Advisor)

INSTRUCTOR(Name,Ssn,Department, Rank)

Tuples from the two relations are matched based on having the same combination of values ofthe

shared attributes—Name, Ssn, Department. All the tuples from both relations are included in the

result, but tuples with the same (Name, Ssn, Department) combination will appear only once in

the result. Tuples appearing only in STUDENT will have a NULL for the Rank attribute, whereas

tuples appearing only in INSTRUCTOR will have a NULL for the Advisor attribute.

A tuple that exists in both relations, which represent a student who is also an instructor, willhave

values for all its attributes The resulting relation, STUDENT_OR_INSTRUCTOR, willhave the

following attributes:

STUDENT_OR_INSTRUCTOR(Name,Ssn,Department,Advisor, Rank)

 ExamplesofQueriesinRelationalAlgebra

Query1.Retrievethename andaddressofallemployeeswhowork forthe ‘Research’ department.

Query2.Foreveryprojectlocatedin‘Stafford’,listtheprojectnumber,thecontrollingdepartment number,

and the department manager’s last name, address, and birth date.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page37

Query3.Findthenamesofemployeeswhoworkonalltheprojectscontrolledbydepartment number 5.

Query4.Makealistof projectnumbersforprojectsthatinvolveanemployeewhoselastnameis ‘Smith’,

either as a worker or as a manager of the department that controls the project.

Query5.List thenames ofallemployees withtwo ormoredependents.

Query6. Retrievethe names ofemployees whohaveno dependents.

Query7. List the namesofmanagers whohaveat least one dependent.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page38

Chapter3:MappingConceptualDesignintoaLogicalDesign

 RelationalDatabaseDesignusingER-to-Relationalmapping

ProceduretocreatearelationalschemafromanEntity-Relationship(ER)

Fig3.1:ERdiagramofcompany database

Step1:MappingofRegularEntityTypes

 Foreachregularentitytype,createarelationRthatincludesallthesimpleattributesofE

 Includeonlythe simplecomponentattributes ofacomposite attribute

 Chooseoneof thekeyattributes of Eas the primarykeyforR

 Ifthechosen keyof Eisacomposite,thentheset ofsimpleattributesthatform itwill

together form the primary key of R.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page39

 If multiple keys were identified for E during the conceptual design, the information

describingtheattributesthatformeachadditional keyiskeptinordertospecifysecondary

(unique) keys of relation R

 Inourexample-COMPANYdatabase,wecreatetherelationsEMPLOYEE,DEPARTMENT, and

PROJECT

 wechooseSsn,Dnumber,andPnumberasprimarykeysfortherelationsEMPLOYEE,

DEPARTMENT, and PROJECT, respectively

 Therelationsthat arecreatedfrom themappingofentitytypesarecalledentityrelations

becauseeachtuplerepresentsanentityinstance.

Step2:MappingofWeakEntityTypes

 Foreachweakentitytype, createarelationRand includeallsimpleattributesoftheentity type as

attributes of R

 IncludeprimarykeyattributeofownerasforeignkeyattributesofR

 Inourexample,wecreatetherelationDEPENDENTinthissteptocorrespondtotheweak entity

type DEPENDENT

 WeincludetheprimarykeySsnoftheEMPLOYEErelation—whichcorrespondstothe owner

entity type—as a foreign key attribute of DEPENDENT; we rename itasEssn

 TheprimarykeyoftheDEPENDENTrelationisthecombination{Essn,Dependent_name},

because Dependent_name is the partial key of DEPENDENT

 Itiscommontochoosethepropagate(CASCADE)optionforthereferentialtriggeredaction on the

foreign key in the relation corresponding to the weak entity type, since a weak entity has an

existence dependency on its owner entity.

 ThiscanbeusedforbothONUPDATE andONDELETE.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page40

Step3:MappingofBinary1:1Relationship Types

 Foreachbinary1:1relationshiptypeRintheERschema,identifytherelations SandTthat

correspond to the entity types participating in R

 Therearethreepossibleapproaches:

- foreignkeyapproach

- mergedrelationshipapproach

- crossreferenceorrelationship relationapproach

1. Theforeign keyapproach

 Chooseoneoftherelations—S, say—andincludeas aforeign keyinS the primarykey ofT.

 ItisbettertochooseanentitytypewithtotalparticipationinRintheroleofS

 Includeallthesimpleattributes(orsimplecomponentsofcompositeattributes)ofthe1:1

relationship type R as attributes of S.

 Inourexample,wemapthe1:1relationshiptypebychoosingtheparticipatingentitytype

DEPARTMENT to serve in the role of S because its participation in the MANAGES

relationship type is total

 WeincludetheprimarykeyoftheEMPLOYEErelationasforeignkey inthe

DEPARTMENT relation and rename it Mgr_ssn.

 WealsoincludethesimpleattributeStart_dateoftheMANAGESrelationshiptypeinthe

DEPARTMENT relation and rename it Mgr_start_date

2. Mergedrelationapproach:

 mergethetwo entitytypesand therelationshipinto asinglerelation

 Thisispossiblewhenbothparticipationsaretotal,asthiswouldindicatethatthetwo tables

will have the exact same number of tuples at all times.

3. Cross-referenceorrelationshiprelationapproach:

 setupathirdrelationRforthepurposeofcross-referencingtheprimarykeysofthetwo relations

S and T representing the entity types.

 requiredforbinaryM:Nrelationships

 TherelationRiscalledarelationshiprelation(orsometimesalookuptable),becauseeach tuple in

R represents a relationship instance that relates one tuple from S with one tuple from T

 Therelation Rwill includetheprimarykeyattributesofS andT as foreignkeys to S andT.

 TheprimarykeyofRwill beoneofthetwoforeignkeys,andtheotherforeignkeywillbe a unique

key of R.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page41

 Thedrawbackishavinganextrarelation,andrequiringanextrajoinoperationwhen

combining related tuples from the tables.

Step4:Mappingof Binary1:NRelationshipTypes

 Foreachregularbinary1:NrelationshiptypeR,identifytherelationSthatrepresentsthe

participating entity type at the N-side of the relationship type.

 IncludeasforeignkeyinStheprimarykeyof therelationTthatrepresentstheotherentity type

participating in R

 Includeanysimpleattributes(orsimplecomponentsofcompositeattributes)ofthe1:N

relationship type as attributes of S

 Inourexample,wenowmapthe1:NrelationshiptypesWORKS_FOR,CONTROLS,and

SUPERVISION

 ForWORKS_FOR weinclude theprimary key Dnumberof theDEPARTMENT relationas

foreign key in the EMPLOYEE relation and call it Dno.

 For SUPERVISIONweincludethe primary key of the EMPLOYEE relation as foreignkey

in the EMPLOYEE relation itself—because the relationship is recursive—and call it

Super_ssn.

 TheCONTROLSrelationshipismappedto theforeignkeyattributeDnumofPROJECT, which

references the primary key Dnumber of the DEPARTMENTrelation.

Step5:MappingofBinaryM:NRelationshipTypes

 ForeachbinaryM:Nrelationship type

• CreateanewrelationS

• Includeprimarykey ofparticipatingentitytypesasforeignkey attributesinS

• IncludeanysimpleattributesofM:Nrelationshiptype

 In our example, we map the M:N relationship type WORKS_ON by creating the relation

WORKS_ON.WeincludetheprimarykeysofthePROJECTandEMPLOYEErelationsas

foreign keys in WORKS_ON and rename them Pno and Essn, respectively.

 WealsoincludeanattributeHoursinWORKS_ONtorepresenttheHoursattributeofthe

relationship type.

 TheprimarykeyoftheWORKS_ONrelationisthecombinationoftheforeignkey

attributes {Essn, Pno}.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page42

 The propagate (CASCADE) option for the referential triggered action should be specified

on the foreign keys in the relation corresponding to the relationship R, since each

relationship instance has an existence dependency on each of the entitiesit relates. This can

be used for both ON UPDATE and ON DELETE.

Step6:MappingofMultivaluedAttributes

 Foreachmultivaluedattribute

• Createanewrelation

• PrimarykeyofRisthecombination ofAandK

• Ifthemultivaluedattributeiscomposite,includeitssimplecomponents

 Inourexample,wecreatearelationDEPT_LOCATIONS

 The attribute Dlocation represents the multivalued attribute LOCATIONS of

DEPARTMENT, while Dnumber—as foreign key—represents theprimary key ofthe

DEPARTMENT relation.

 TheprimarykeyofDEPT_LOCATIONSisthecombinationof{Dnumber,Dlocation}

 AseparatetuplewillexistinDEPT_LOCATIONSforeachlocationthatadepartmenthas

 The propagate (CASCADE) option for the referential triggered action should be specified

ontheforeignkeyintherelationRcorrespondingtothemultivaluedattributeforbothON

UPDATE and ON DELETE.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page43

Step7:MappingofN-aryRelationship Types

 Foreachn-aryrelationshiptypeR

• CreateanewrelationStorepresentR

• Includeprimarykeysof participatingentitytypesasforeignkeys

• Includeanysimpleattributesasattributes

 TheprimarykeyofSisusuallyacombinationofalltheforeignkeysthatreferencethe relations

representing the participating entity types.

 Forexample,considertherelationshiptypeSUPPLY.Thiscanbe mappedto therelation

SUPPLY whose primary key is the combination of the three foreign keys {Sname,

Part_no, Proj_name}.

Figure3.2:Mappingthen-aryrelationshiptypeSUPPLY

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page44

Chapter4:SQL

 Introduction

SQL was called SEQUEL (Structured English Query Language) and was designed and

implemented at IBM Research.The SQL language may be considered one of the major reasons for

the commercial success of relational databases. SQL is a comprehensive database language. It has

statements for data definitions, queries, and updates. Hence, it is both a DDL and a DML. In

addition, it has facilities for defining views on the database, for specifying security and

authorization, for defining integrity constraints, and for specifying transaction controls. It also has

rules for embedding SQL statements into a general-purpose programming language such as Java,

COBOL, or C/C++.

 SQLDataDefinitionandDataTypes

SQL uses the terms table, row, and column for the formal relational model terms relation, tuple, and

attribute, respectively. The main SQL command for data definition is the CREATE statement, which

can be used to create schemas, tables (relations), domains, views, assertions and triggers.

 SchemaandCatalogConceptsinSQL

An SQL schema is identified by a schema name, and includes an authorization identifier to

indicate the user or account who owns the schema, as well as descriptors for each element in

the schema. Schema elements include tables, constraints, views, domains, and other

constructs (such as authorization grants) that describe the schema. A schema is created viathe

CREATE SCHEMA statement .

For example, the following statement creates a schema called COMPANY, owned by theuser

with authorization identifier ‘Jsmith’..

CREATESCHEMACOMPANYAUTHORIZATION‘Jsmith’;

In general, not all users are authorized to create schemas and schema elements. The privilege

to create schemas, tables, and other constructs must be explicitly granted to the relevant user

accounts by the system administrator or DBA.

SQL uses the concept of a catalog—a named collection of schemas in an SQL environment.

A catalog always contains a special schema called INFORMATION_SCHEMA, which

providesinformationonalltheschemasin thecatalogandalltheelementdescriptorsinthese

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page45

schemas. Integrity constraints such as referential integrity can be defined between relations

only if they exist in schemas within the same catalog. Schemas within the same catalog can

also share certain elements, such as domain definitions.

 TheCREATETABLECommandinSQL

TheCREATETABLEcommand is used to specify anewrelation by giving it anameand specifying its

attributes and initial constraints. The attributes are specified first, and each attribute is given a name,

a data type to specify its domain of values, and any attribute constraints, such as NOT NULL. The

key, entity integrity, and referential integrity constraints can be specified within the CREATE

TABLE statement after the attributes are declared, or they can be added later using the ALTER

TABLE command.

Typically, the SQL schema in which the relations are declared is implicitly specified in the

environment in which the CREATE TABLE statements are executed. Alternatively, we canexplicitly

attach the schema name to the relation name, separated by a period. For example, by writing

rather than

CREATETABLECOMPANY.EMPLOYEE...

CREATETABLEEMPLOYEE...

TherelationsdeclaredthroughCREATETABLEstatementsarecalled basetables. Examples:

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page46

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page47

 AttributeDataTypesandDomainsin SQL

Basicdatatypes

1. Numericdatatypesincludes

• integernumbersofvarious sizes(INTEGERor INT,andSMALLINT)

• floating-point(real)numbersofvariousprecision(FLOATorREAL,and

DOUBLE PRECISION).

• FormattednumberscanbedeclaredbyusingDECIMAL(i,j)—or

DEC(i,j) or NUMERIC(i,j)—where

i-precision,totalnumberofdecimaldigits

j-scale, numberofdigitsafter thedecimal point

2. Character-stringdatatypes

• fixedlength—CHAR(n) orCHARACTER(n),wherenisthenumberofcharacters

• varyinglength—VARCHAR(n)orCHARVARYING(n)orCHARACTERVARYING(n),

where n is the maximum number of characters

• Whenspecifyingaliteralstringvalue,itisplacedbetweensinglequotationmarks

(apostrophes), and it is casesensitive

• Forfixedlengthstrings,ashorterstringispaddedwithblankcharacterstotheright

• Forexample,ifthevalue‘Smith’isforanattributeoftypeCHAR(10),itispaddedwith five

blank characters to become ‘Smith ’ if needed

• Paddedblanksaregenerallyignoredwhenstringsarecompared

• Anothervariable-lengthstringdatatypecalledCHARACTERLARGEOBJECTorCLOB is

also available to specify columns that have large text values, such as documents

• TheCLOBmaximumlengthcanbespecifiedinkilobytes(K),megabytes(M),orgigabytes (G)

• Forexample,CLOB(20M)specifiesa maximumlengthof20megabytes.

3. Bit-stringdatatypesare eitherof

• fixedlengthn—BIT(n)—orvaryinglength—BITVARYING(n),wherenisthemaximum

number of bits.

• Thedefaultforn,thelengthofacharacterstringorbitstring,is1.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page48

• LiteralbitstringsareplacedbetweensinglequotesbutprecededbyaBtodistinguishthem from

character strings; for example, B‘10101’

• Anothervariable-lengthbitstringdatatypecalledBINARYLARGEOBJECTorBLOB is also

available to specify columns that have large binary values, such as images.

• ThemaximumlengthofaBLOBcanbespecifiedinkilobits(K),megabits(M),orgigabits (G)

• Forexample,BLOB(30G)specifiesamaximumlengthof30gigabits.

4. A Boolean data type has the traditional values of TRUE or FALSE.In SQL, because of the

presenceofNULLvalues,athree-valuedlogicisused,soathirdpossiblevalueforaBoolean data type

is UNKNOWN

5. TheDATEdatatypehas tenpositions,anditscomponentsareYEAR,MONTH,and DAYin the

form YYYY-MM-DD

6. The TIME data type has at least eight positions, with the components HOUR, MINUTE,

and SECOND in the form HH:MM:SS.

Onlyvaliddates andtimes shouldbe allowedby theSQLimplementation.

7. TIME WITH TIME ZONE data type includes an additional six positions for specifying the

displacement from the standard universal time zone, whichis in the range +13:00 to–

12:59inunits ofHOURS:MINUTES. If WITH TIME ZONE isnot included, the default isthe

local time zone for the SQL session.

Additionaldatatypes

1. Timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus a minimum

of six positions for decimal fractions of seconds and an optional WITH TIME ZONE

qualifier.

2. INTERVAL data type. This specifies an interval—a relative value that can be used to

increment or decrement an absolute value of a date, time, or timestamp. Intervals arequalified

to be either YEAR/MONTH intervals or DAY/TIMEintervals.

It is possible to specify the data type of each attribute directly or a domain can be declared, and the

domain name used with the attribute Specification. This makes it easier to change the data type for a

domain that is used by numerous attributes in a schema, and improves schema readability. For

example, we can create a domain SSN_TYPE by the following statement:

CREATEDOMAINSSN_TYPEASCHAR(9);

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page49

WecanuseSSN_TYPEinplaceofCHAR(9)fortheattributesSsnandSuper_ssnofEMPLOYEE, Mgr_ssn of

DEPARTMENT, Essn of WORKS_ON, and Essn of DEPENDENT

 SpecifyingConstraintsinSQL

BasicconstraintsthatcanbespecifiedinSQLaspartoftablecreation:

• keyandreferentialintegrityconstraints

• RestrictionsonattributedomainsandNULLs

• constraintsonindividualtuples withinarelation

 SpecifyingAttributeConstraintsandAttribute Defaults

BecauseSQL allowsNULLsasattributevalues, a constraintNOTNULL maybespecifiedifNULL

isnotpermittedforaparticularattribute.Thisisalwaysimplicitly specifiedfortheattributesthatare part of

the primary key of each relation, but it can be specified for any other attributes whose values are

required not to be NULL.

Itis alsopossible to defineadefault valuefor anattributeby appendingtheclauseDEFAULT

<value>toanattributedefinition.Thedefaultvalueisincludedinanynewtupleifanexplicitvalue is not

provided for that attribute.

CREATETABLEDEPARTMENT (

. . . ,

Mgr_ssnCHAR(9)NOT NULLDEFAULT‘888665555’,

)

Anothertypeofconstraintcanrestrictattributeordomainvaluesusingthe CHECKclausefollowing an

attribute or domain definition . For example, suppose that department numbers are restricted to

integer numbers between 1 and 20; then, we can change the attribute declaration of Dnumber in the

DEPARTMENT table to the following:

Dnumber INT NOTNULLCHECK (Dnumber>0ANDDnumber<21);

TheCHECKclausecanalsobeusedinconjunctionwiththeCREATEDOMAINstatement.For example, we

can write the following statement:

CREATEDOMAIN D_NUMASINTEGER

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page50

CHECK(D_NUM>0ANDD_NUM <21);

We can then use the created domain D_NUM as the attribute type for all attributes that refer to

department number such as Dnumber of DEPARTMENT, Dnum of PROJECT, Dno ofEMPLOYEE,

and so on.

 SpecifyingKeyandReferentialIntegrityConstraints

ThePRIMARYKEYclausespecifiesoneormoreattributesthatmakeup theprimarykeyofa relation. If

a primary key has a single attribute, the clause can follow the attribute directly. For example, the

primary key of DEPARTMENT can be specified as:

DnumberINTPRIMARYKEY;

TheUNIQUEclausecan also bespecifieddirectly forasecondarykeyifthesecondarykeyisa single

attribute, as in the following example:

DnameVARCHAR(15)UNIQUE;

Referentialintegrityisspecifiedviathe FOREIGNKEY clause

FOREIGNKEY (Super_ssn)REFERENCESEMPLOYEE(Ssn),

FOREIGNKEY(Dno)REFERENCESDEPARTMENT(Dnumber

A referential integrity constraint can be violated when tuples are inserted or deleted, or when a

foreign key or primary key attribute value is modified. The default action that SQL takes for an

integrity violation is to reject the update operation that will cause a violation, which is known as

the RESTRICT option.

The schema designer can specify an alternative action to be taken by attaching a referential

triggered action clause to any foreign key constraint. The options include SET NULL,

CASCADE, and SET DEFAULT. An option must be qualified with either ON DELETE or ON

UPDATE

 FOREIGNKEY(Dno)REFERENCESDEPARTMENT(Dnumber)ONDELETESET

DEFAULT ON UPDATE CASCADE

 FOREIGNKEY(Super_ssn)REFERENCESEMPLOYEE(Ssn)ONDELETESET

NULL ON UPDATE CASCADE

 FOREIGNKEY(Dnumber)REFERENCES DEPARTMENT(Dnumber)ONDELETE

CASCADEONUPDATE CASCADE

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page51

In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the same forboth

ON DELETE and ON UPDATE: The value of the affected referencing attributes ischanged to

NULL for SET NULL and to the specified default value of the referencing attribute for SET

DEFAULT.

The action for CASCADE ON DELETEis todelete all the referencingtuples whereas the

actionforCASCADEONUPDATE isto changethevalueofthereferencing foreign key attribute(s)to the

updated (new) primary key value for all the referencing tuples . It is the responsibility of the

database designer to choose the appropriate action and to specify it in the database schema. As a

general rule, the CASCADE option issuitable for“relationship” relations such as WORKS_ON; for

relations that represent multivalued attributes, such as DEPT_LOCATIONS; and for relations that

represent weak entity types, such as DEPENDENT.

 Giving Names toConstraints

Thenames of all constraints within a particularschema must be unique. A constraint name is used

to identify a particular constraint in case the constraint must be dropped later and replaced with

another constraint.

 SpecifyingConstraintsonTuplesUsingCHECK

In addition to key and referential integrity constraints, which are specified by special keywords,

other table constraints can be specified through additional CHECK clauses at the end of a

CREATE TABLE statement. These can be called tuple-based constraints because they apply to

each tuple individually and are checked whenever a tuple is inserted or modified

Forexample,supposethattheDEPARTMENTtablehadanadditionalattributeDept_create_date,

whichstoresthedatewhenthedepartmentwascreated.ThenwecouldaddthefollowingCHECK clause at

the end of the CREATE TABLE statement for the DEPARTMENT table to make sure that a

manager’s start date is later than the department creation date

CHECK(Dept_create_date<=Mgr_start_date);

 BasicRetrievalQueriesinSQL

SQLhasonebasicstatementfor retrievinginformation fromadatabase: theSELECTstatement.

 TheSELECT-FROM-WHEREStructureofBasicSQLQueries

The basic form of the SELECT statement, sometimes called a mapping or a select-from-where

block, is formed of the three clauses SELECT, FROM, and WHERE and has the following form:

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page52

SELECT<attributelist>FRO

M <table list>WHERE

<condition>;

Where,

 <attributelist>isalistofattributenameswhosevaluesaretoberetrievedbythe query

 <tablelist>isalistoftherelationnamesrequired toprocessthequery

 <condition>isaconditional(Boolean)expressionthatidentifiesthetuplesto be

retrieved by the query.

Examples:

1. Retrievethebirthdateandaddressoftheemployee(s)whosename is‘JohnB.

Smith’.

SELECTBdate, Address

FROMEMPLOYEE

WHEREFname=‘John’ANDMinit=‘B’ANDLname=‘Smith’;

The SELECT clause of SQL specifies the attributes whose values are tobe retrieved, whichare

called the projection attributes. The WHERE clause specifies the Boolean condition that

must be true for any retrieved tuple, which is known as the selection condition.

2. Retrievethename andaddressofallemployeeswhoworkforthe‘Research’department.

SELECTFname,Lname,Address

FROMEMPLOYEE,DEPARTMENT

WHEREDname=‘Research’ANDDnumber=Dno;

In the WHERE clause, the condition Dname = ‘Research’ is a selection conditionthat chooses

the particular tuple of interest in the DEPARTMENT table, because Dname is an attribute of

DEPARTMENT. The condition Dnumber = Dno is called a join condition, because it

combines two tuples: one from DEPARTMENT and one from EMPLOYEE, whenever the

value of Dnumber in DEPARTMENT is equal to thevalue of Dno in EMPLOYEE.A query

that involves only selection and join conditions plus projectionattributes is known as a select-

project-join query.

3. For every project located in ‘Stafford’, list the project number, the controlling department

number, and the department manager’s last name, address, and birthdate.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page53

SELECTPnumber,Dnum,Lname,Address,Bdate

FROMPROJECT,DEPARTMENT,EMPLOYEE

WHEREDnum=DnumberANDMgr_ssn=SsnANDPlocation=‘Stafford’;

The join condition Dnum = Dnumber relates a project tuple to its controlling department tuple,

whereas the join condition Mgr_ssn = Ssn relates the controlling department tuple to the

employee tuple who manages that department. Each tuple in the result will be a combination of

one project, one department, and one employee that satisfies the joinconditions. The projection

attributes are used to choose the attributes to be displayed from each combined tuple.

 AmbiguousAttributeNames,Aliasing,Renaming,andTupleVariables

In SQL, the same name can be used for two or more attributes as long as the attributes are in

different relations. If this is the case, and a multitable query refers to two or more attributes with

the same name, we must qualify the attribute name with the relation name to prevent ambiguity.

This is done by prefixing the relation name to the attribute name and separating the two by a

period.

Example: Retrieve the name and address of all employees who work for the ‘Research’

department

SELECTFname,EMPLOYEE.Name,Address

FROMEMPLOYEE,DEPARTMENT

WHEREDEPARTMENT.Name=‘Research’AND

DEPARTMENT.Dnumber=EMPLOYEE.Dnumber;

The ambiguity of attribute names also arises in the case of queries that refer to the same relation

twice.Forexampleconsiderthequery:Foreachemployee,retrievetheemployee’sfirstandlast name and

the first and last name of his or her immediate supervisor.

SELECTE.Fname,E.Lname,S.Fname, S.Lname

FROMEMPLOYEEASE, EMPLOYEEAS S

WHEREE.Super_ssn=S.Ssn;

In this case, we are required to declare alternative relation names E and S, called aliases or tuple

variables, for the EMPLOYEE relation. An alias can follow the keyword AS, or it can directly

follow the relation name—for example, by writing EMPLOYEE E, EMPLOYEE S. It is alsopossible

to rename the relation attributes within the query in SQL by giving them aliases. For example, if we

write

EMPLOYEEASE(Fn,Mi,Ln,Ssn,Bd,Addr,Sex,Sal,Sssn, Dno)

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page54

intheFROMclause,FnbecomesanaliasforFname,MiforMinit,LnforLname,andsoon

 UnspecifiedWHEREClauseandUseoftheAsterisk

A missing WHERE clause indicates no condition on tuple selection; hence, all tuples of the relation

specified in the FROM clause qualify and are selected for the query result.If more than one relationis

specified in the FROM clause and there is no WHERE clause, then the CROSS PRODUCT—all

possible tuple combinations—of these relations is selected.

Example: Select all EMPLOYEE Ssns and all combinations of EMPLOYEE Ssn and

DEPARTMENT Dname in the database.

SELECTSsn

FROMEMPLOYEE;

SELECTSsn,Dname

FROMEMPLOYEE,DEPARTMENT;

To retrieve all the attribute values of the selected tuples, we do not have to list the attribute names

explicitly in SQL; wejust specifyan asterisk (*), which stands for all the attributes. Forexample, the

following query retrieves all the attribute values of any EMPLOYEE who works in DEPARTMENT

number 5

SELECT*FROMEMPLOYEEWHEREDno=5;

SELECT*FROMEMPLOYEE,DEPARTMENTWHERE Dname=‘Research’

ANDDno=Dnumber;

SELECT*FROMEMPLOYEE,DEPARTMENT;

 Tablesas Sets inSQL

SQL usually treats a table not as a set but rather as a multiset; duplicate tuples can appear more than

once in a table, and in the result of a query. SQL does not automatically eliminate duplicate tuples in

the results of queries, for the following reasons:

 Duplicate elimination isan expensive operation. One way to implementitisto sort the tuples

first and then eliminate duplicates.

 Theusermaywanttosee duplicatetuplesintheresultofaquery.

 When an aggregate function is applied to tuples, in most cases we do not want to eliminate

duplicates.

Ifwedo wantto eliminateduplicate tuples fromtheresult ofan SQLquery, weusethekeyword

DISTINCTintheSELECTclause,meaningthatonlydistincttuplesshouldremainintheresult.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page55

Example:Retrievethesalaryof everyemployee andalldistinctsalaryvalues

(a) SELECTALLSalaryFROMEMPLOYEE;

(b) SELECTDISTINCTSalaryFROMEMPLOYEE;

SQL has directly incorporated some of the set operations from mathematical set theory, which are

also part of relational algebra. There are

 setunion(UNION)

 setdifference(EXCEPT)and

 setintersection(INTERSECT)

The relations resulting from these set operations are sets of tuples; that is, duplicate tuples are

eliminatedfromtheresult.Thesesetoperationsapplyonly to union-compatiblerelations,sowemust make

sure that the two relations on which we apply the operation have the same attributes and that the

attributes appear in the same order in both relations.

Example: Make a list of all project numbers for projects that involve an employee whose last nameis

‘Smith’, either as a worker or as a manager of the department that controls the project

(SELECTDISTINCT PnumberFROMPROJECT,DEPARTMENT,

EMPLOYEEWHEREDnum=DnumberAND Mgr_ssn=SsnANDLname=‘Smith’)

UNION

(SELECTDISTINCT PnumberFROMPROJECT,WORKS_ON, EMPLOYEE

WHEREPnumber=PnoANDEssn=SsnANDLname=‘Smith’);

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page56

 SubstringPatternMatchingandArithmeticOperators

Severalmorefeaturesof SQL

Thefirstfeatureallowscomparisonconditionsononlypartsofacharacterstring,usingthe LIKE

comparison operator. This can be used for string pattern matching. Partial strings are specified

using two reserved characters:

 %replaces anarbitrary numberof zeroormorecharacters

 _(underscore) replacesa single character

Forexample,considerthefollowingquery:RetrieveallemployeeswhoseaddressisinHouston, Texas

SELECTFname,Lname FROMEMPLOYEEWHERE Address

LIKE‘%Houston,TX%’;

Toretrieveallemployeeswhowerebornduring the1950s, wecan useQuery

SELECTFname,Lname FROMEMPLOYEE

WHERE Bdate LIKE ‘_ _ 5 ’;

If an underscore or % is needed as a literal character in the string, the character should be precededby

an escape character, which isspecified after the string using the keyword ESCAPE. For example,

‘AB_CD\%EF’ ESCAPE ‘\’ represents the literal string ‘AB_CD%EF’ because \ is specified as the

escape character.Also, we need a rule to specify apostrophes or single quotation marks (‘ ’) ifthey are

to be included in a string because they are used to begin and end strings. If an apostrophe (’) is

needed, it is represented as two consecutive apostrophes (”) so that it will not be interpreted asending

the string.

Another feature allows the use of arithmetic in queries.The standard arithmetic operators for addition

(+), subtraction (–), multiplication (*), and division (/) can be applied to numeric values or attributes

with numeric domains. For example,suppose that we want to see the effect of giving all employees

who work on the ‘ProductX’ project a 10 percent raise; we can issue the following query:

SELECTE.Fname,E.Lname,1.1*E.Salary ASIncreased_sal

FROMEMPLOYEEASE,WORKS_ONAS W,PROJECT AS P

WHERE E.Ssn=W.Essn AND W.Pno=P.Pnumber AND P.Pname=‘ProductX’;

Example:Retrieveallemployeesindepartment5whosesalaryisbetween$30,000and$40,000.

SELECT*FROMEMPLOYEEWHERE(SalaryBETWEEN 30000AND

40000)AND Dno =5;

The condition (Salary BETWEEN 30000 AND 40000) is equivalent to the condition((Salary >=

30000) AND (Salary <= 40000)).

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page57

 OrderingofQueryResults

SQLallowstheusertoorderthetuplesintheresultofaquerybythevaluesofoneormoreofthe attributes that

appear in the query result, by using the ORDER BY clause.

Example:Retrievealistofemployeesandtheprojectstheyareworkingon,orderedbydepartment and,

within each department, ordered alphabetically bylast name, then first name.

SELECTD.Dname,E.Lname,E.Fname,P.Pname

FROMDEPARTMENTD,EMPLOYEE E,WORKS_ONW,PROJECTP

WHERED.Dnumber= E.DnoANDE.Ssn=W.Essn ANDW.Pno=P.Pnumber

ORDERBYD.Dname, E.Lname,E.Fname;

The default order is in ascending order of values.We can specify the keyword DESC if we want to

see the result in a descending order of values. The keyword ASC can be used to specify ascending

order explicitly. For example, if we want descending alphabetical order on Dname and ascending

order on Lname, Fname, the ORDER BY clause can be written as

ORDERBYD.Dname DESC,E.LnameASC,E.Fname ASC

 INSERT,DELETE,andUPDATEStatementsinSQL

 TheINSERTCommand

INSERT is used to add a single tuple to a relation. We must specify the relation name and a list of

values for the tuple. The values should be listed in the same order in which the corresponding

attributes were specified in the CREATE TABLE command.

Example:INSERTINTOEMPLOYEEVALUES(‘Richard’,‘K’,‘Marini’,‘653298653’,‘1962- 12-

30’, ’98 Oak Forest, Katy, TX’, ‘M’, 37000, ‘653298653’, 4);

INSERTINTOEMPLOYEE (Fname,Lname,Dno,Ssn)

VALUES(‘Richard’,‘Marini’,4, ‘653298653’);

A second form of the INSERT statement allows the user to specify explicit attribute names that

correspondtothevaluesprovidedintheINSERTcommand.Thevaluesmustincludeallattributes

withNOTNULLspecificationandnodefaultvalue.AttributeswithNULLallowedorDEFAULT values are

the ones that can be left out.

A variation of the INSERT command inserts multiple tuples into a relation in conjunction with

creating the relation and loading it with the result of a query. For example, to create a temporarytable

that has the employee lastname, project name, and hours per week for each employee working on a

project, we can write the statements in U3A and U3B:

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page58

U3A:CREATETABLE WORKS_ON_INFO(

Emp_name VARCHAR(15),

Proj_name VARCHAR(15),

Hours_per_weekDECIMAL(3,1));

U3B: INSERT INTOWORKS_ON_INFO

(Emp_name,Proj_name,Hours_per_week)

SELECTE.Lname,P.Pname,W.Hours

FROMPROJECTP, WORKS_ONW,EMPLOYEE E

WHEREP.Pnumber=W.PnoANDW.Essn=E.Ssn;

AtableWORKS_ON_INFOiscreatedbyU3Aandisloadedwiththejoinedinformationretrieved from the

database by the query in U3B. We can now query WORKS_ON_INFO as we would any other

relation;

 TheDELETECommand

The DELETE command removes tuples from a relation. It includes a WHERE clause, similar to that

used in an SQL query, to select the tuples to be deleted. Tuples are explicitly deleted from only one

tableat atime.Thedeletion maypropagateto tuples in otherrelations if referential triggered actions are

specified in the referential integrity constraints of the DDL.

Example:

DELETEFROM EMPLOYEEWHERELname=‘Brown’;

Depending on the number of tuples selected by the condition in the WHERE clause, zero, one, or

several tuples can be deleted by a single DELETE command. A missing WHERE clause specifies

that all tuples intherelation are to bedeleted; however,thetableremains inthedatabaseas an empty table.

 TheUPDATECommand

The UPDATE command is used to modify attribute values of one or more selected Tuples.An

additional SET clause in the UPDATE command specifies the attributes to be modified and theirnew

values. For example, to change the location and controlling department number of project number 10

to ‘Bellaire’ and 5, respectively, we use

UPDATEPROJECT SETPlocation=‘Bellaire’, Dnum=5 WHERE Pnumber=10;

As in the DELETE command, a WHERE clause in the UPDATE command selects the tuples to be

modified from a single relation. However, updating a primary key value may propagate tothe foreign

key values of tuples in other relations if such a referential triggered action is specified in the

referential integrity constraints of the DDL.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page59

Several tuples can be modified with a single UPDATE command. An example is to give all

employees in the ‘Research’ department a 10 percent raisein salary, as shown by the followingquery

UPDATEEMPLOYEE

SETSalary=Salary*1.1

WHEREDno =5;

EachUPDATEcommandexplicitlyreferstoasinglerelationonly.Tomodifymultiple relations,we must

issue several UPDATE commands.

 AdditionalFeaturesofSQL

 SQL has various techniques for specifying complex retrieval queries, including nested queries,

aggregate functions, grouping, joined tables, outer joins, and recursive queries; SQL views,

triggers, and assertions; and commands for schema modification.

 SQL has various techniques for writing programs invarious programminglanguages that include

SQL statements to access one or more databases.

 SQL has transaction control commands. These are used to specify units of database processing

for concurrency control and recovery purposes.

 SQLhaslanguage constructsforspecifyingthe grantingandrevokingofprivilegestousers.

 SQL has language constructs for creating triggers. These are generally referred to as active

databasetechniques,sincetheyspecifyactionsthatareautomaticallytriggeredbyeventssuchas

database updates.

 SQL has incorporated many features from object-oriented models to have more powerful

capabilities, leading to enhanced relational systems known as object-relational.

 SQLandrelationaldatabasescaninteractwithnewtechnologiessuchasXML

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page60

QuestionBank

1. Definethefollowing terms as they applytothe relational model ofdata:

i)domainii)attributeiii)n-tupleiv)relationschemav)relationstate

vi)degreeof arelation vii)relationaldatabaseschemaviii)relationaldatabasestate.

2. Whatisthedifferencebetweenakeyandasuperkey?

3. Discussthevariousreasonsthat leadto theoccurrenceof NULLvaluesinrelations.

4. Discuss thecharacteristicsofrelations

5. Discussthevariousrestrictionsondatathatcanbespecifiedonarelationaldatabaseinthe form of

constraints.

6. Suppose that each of the following Update operations isapplied directly tothe company

databasestate.Discussallintegrityconstraintsviolatedbyeachoperation, ifany,andthe

different ways of enforcing these constraints.

a. Insert<‘Robert’,‘F’,‘Scott’,‘943775543’,‘1972-06-21’,‘2365NewcastleRd,Bellaire, TX’,

M, 58000,

‘888665555’,1>into EMPLOYEE.

b. Insert<‘ProductA’,4,‘Bellaire’,2>intoPROJECT.

c. Insert<‘Production’,4,‘943775543’,‘2007-10-01’>intoDEPARTMENT.

d. Insert<‘677678989’,NULL,‘40.0’>intoWORKS_ON.

e. Insert<‘453453453’,‘John’,‘M’,‘1990-12-12’,‘spouse’>intoDEPENDENT.

f. Deletethe WORKS_ONtupleswith Essn=‘333445555’.

g. DeletetheEMPLOYEE tuplewith Ssn=‘987654321’.

h. DeletethePROJECT tuplewith Pname = ‘ProductX’.

i. ModifytheMgr_ssnandMgr_start_date oftheDEPARTMENTtuplewithDnumber

=5 to ‘123456789’and‘2007-10-01’, respectively.

j. ModifytheSuper_ssnattributeoftheEMPLOYEEtuplewithSsn=‘999887777’to

‘943775543’.

k. ModifytheHoursattributeoftheWORKS_ONtuplewithEssn=‘999887777’and Pno =

10 to ‘5.0’.

7. Expainthefollowingunaryoperationswithsyntaxandexample

i)SELECT ii)PROJECT iii)RENAME

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page61

8. Explainthefollowing binaryoperationswith syntaxandexample

i)UNIONii)INTERSECTIONiii)MINUSiv)CROSSPRODUCTV)DIVISION

9. Whatisunioncompatibility?WhydotheUNION,INTERSECTION,andDIFFERENCE

operations require that the relations on which they are applied be union compatible?

10. Discussthevarious types of join operations.

11. Discussthenotationusedinrelationalsystemstorepresentqueriesinternally.

12. Illustratewithanexample,significanceofgeneralizedprojection.

13. Illustratewithanexample,Aggregate FunctionsandGrouping

14. Illustratewithanexample,RecursiveClosureOperations

15. HowaretheOUTER JOINoperations differentfromtheINNER JOINoperations?

16. HowistheOUTERUNIONoperationdifferentfromUNION?

17. SpecifythefollowingqueriesontheCOMPANY relationaldatabaseschemausingthe

relational operators

a. Retrievethenamesofallemployeesindepartment5whoworkmorethan10hoursperweek on the

ProductX project.

b. Listthenamesofallemployeeswhohaveadependentwiththesamefirstnameasthemselves.

c. Findthenamesofallemployeeswhoaredirectlysupervisedby‘FranklinWong’.

d. Foreachproject,listtheprojectnameandthetotalhoursperweek(byallemployees) spent on

that project.

e. Retrievethenamesofallemployeeswhodonotworkonanyproject.

f. Retrievethe averagesalaryofall femaleemployees.

18. DiscussthecorrespondencesbetweentheERmodelconstructsandtherelationalmodel
constructs. Show how each ER model construct can bemapped to the relationalmodel

19. Discussthedatatypesthat are allowedforSQLattributes

20. WriteSQLupdatestatementstodothefollowingonthedatabaseschemashownin

Figure(1)

a. Insertanewstudent,<‘Johnson’,25,1,‘Math’>, inthedatabase.

b. Changetheclassofstudent ‘Smith’ to2.
c. Insertanewcourse,<‘KnowledgeEngineering’,‘CS4390’,3,‘CS’>.

d. Deletetherecordforthestudentwhosenameis‘Smith’andwhosestudentnumberis17.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page62

Fig(2):studentschemeanddatabase state

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page63

21. Brieflydiscusshow thedifferentupdata operationson arelation deal withconstraint

violations?

22. Consider the following schema for a COMPANY database:

EMPLOYEE(Fname,Lname,Ssn,Address,Super-ssn,Salary,Dno)

DEPARTMENT (Dname, Dnumber, Mgr-ssn, Mgr-start-date)

DEPT-LOCATIONS (Dnumber, Dlocation)

PROJECT(Pname,Pnumber,Plocation,Dnum)

WORKS-ON (Ess!!, Pno, Hours)

DEPENDENT(Essn,Dependent-name,Sex,Bdate,Relationship) Write

the queries in relational algebra.

i) Retrievethename andaddressofallemployeeswhoworkfor'Sales'department.

ii) Findthenamesof employeeswhoworkon allthe projectscontrolledbythedepartment

number 3.

iii) Listthe namesofallemployees with twoormoredependents.

iv) Retrievethenamesofemployeeswhohave nodependents.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page1

Module3

Chapter1:SQL-AdvancesQueries

 MoreComplexSQLRetrievalQueries

Additionalfeaturesallowuserstospecifymorecomplexretrievalsfromdatabase

 ComparisonsInvolvingNULLandThree-ValuedLogic

SQLhasvariousrulesfor dealingwithNULLvalues. NULLisusedtorepresent amissingvalue,but that it

usually has one of three different interpretations—value

Example

1. Unknownvalue.Aperson’sdateofbirthisnot known,soitisrepresentedbyNULL inthe

database.

2. Unavailableorwithheldvalue. Apersonhasahomephonebutdoesnot wantittobe listed, so

it is withheld and represented as NULL in the database.

3. Notapplicableattribute. AnattributeCollegeDegreewouldbeNULLforapersonwhohasno college

degrees because it does not apply to thatperson.

Each individual NULL value is considered to be different from every other NULL value inthe various

database records. When a NULL is involved in a comparison operation, the result is considered to

be UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valued logic with

values TRUE, FALSE, and UNKNOWN instead of the standard two-valued (Boolean) logic with

values TRUE or FALSE. It is therefore necessary to define the results (or truth values) of three-

valued logical expressions when the logical connectives AND, OR, and NOT are used

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page2

The rows and columns represent the values of the results of comparison conditions, which would

typically appear in the WHERE clause of an SQLquery.

In select-project-join queries, the general rule is that only those combinations of tuples that evaluate

the logicalexpression in the WHERE clause of thequeryto TRUE are selected. Tuple combinations

that evaluate to FALSE or UNKNOWN are not selected.

SQLallowsqueriesthatcheckwhetheranattributevalueisNULLusingthecomparisonoperators

IS orISNOT.

Example:Retrievethenamesofallemployeeswhodonothavesupervisors.

SELECTFname,Lname

FROMEMPLOYEE

WHERESuper_ssnISNULL;

 NestedQueries,Tuples,andSet/MultisetComparisons

Some queries require that existing values in the database be fetched and then used in acomparison

condition. Such queries can be conveniently formulated by using nested queries,which are

complete select-from-where blocks within the WHERE clause of another query.That other query is

called the outer query

Example1: List the project numbers of projects that have an employee with last name ‘Smith’ as

manager

SELECTDISTINCTPnumberFROMPROJECTWHERE

PnumberIN

(SELECTPnumberFROMPROJECT,DEPARTMENT,EMPLOYEE

WHEREDnum=DnumberANDMgr_ssn=SsnANDLname=‘smith’);

Example2: List the project numbers of projects that have an employee with last name ‘Smith’ as

either manager or as worker.

SELECTDISTINCTPnumberFROMPROJECTWHERE

PnumberIN

(SELECTPnumberFROMPROJECT,DEPARTMENT,EMPLOYEE

WHEREDnum=DnumberANDMgr_ssn=SsnANDLname=‘smith’)

OR

PnumberIN

(SELECTPnoFROMWORKS_ON,EMPLOYEEWHEREEssn=SsnAND

Lname=‘smith’);

We makeuseofcomparisonoperatorIN,whichcomparesavaluevwithaset(ormultiset)of values V

and evaluates to TRUE if v is one of the elements in V.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page3

The first nested query selects theprojectnumbers of projectsthat have an employee with last name

‘Smith’ involved as manager. The second nested query selects the project numbers of projects that

have an employee with last name ‘Smith’ involved as worker. In the outer query, we use the OR

logical connective to retrievea PROJECT tupleif the PNUMBER valueof that tupleis in the resultof

either nested query.

SQL allows the use of tuples of values in comparisons by placing them within parentheses. For

example, the following query will select the Essns of all employees who work the same (project,

hours) combination on some project that employee ‘John Smith’ (whose Ssn = ‘123456789’) works

on

In this example, the IN operator compares the subtuple of values in parentheses (Pno,Hours) within

each tuple in WORKS_ON with the set of type-compatible tuples produced by the nested query.

NestedQueries::ComparisonOperators

Other comparison operators can be used to compare a single value v to a set or multiset V. The =

ANY (or = SOME) operator returns TRUE if the value v is equal to some value in the set V and is

hence equivalent to IN. The two keywords ANY and SOME have the same effect. The keyword ALL

can also be combined with each of these operators. For example, the comparison condition(v> ALL

V) returns TRUE if the value v is greater than all the values in the set (or multiset) V. For example is

the following query, which returns the names of employees whose salary is greater than the salary

of all the employees in department 5:

SELECTLname,Fname

FROMEMPLOYEE

WHERESalary>ALL(SELECTSalary

FROMEMPLOYEE

WHEREDno=5);

In general, we canhaveseveral levels of nestedqueries. We canonceagain befaced withpossible

ambiguity among attribute names if attributes of the same name exist—one in a relation in the

FROM clause of the outer query, and another in a relation in the FROM clause of the nested query.

The rule is that a reference to an unqualified attribute refers to the relation declared in theinnermost

nested query.

To avoid potential errorsand ambiguities, create tuple variables (aliases) for all tables referenced in

SQL query

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page4

Example:Retrievethename of eachemployeewhohas adependentwiththesamefirstnameand is the

same sex as the employee

SELECT E.Fname, E.Lname

FROM EMPLOYEE

ASEWHEREE.SsnIN(SELECTEs

sn FROM DEPENDENT AS D

WHEREE.Fname=D.Dependent_name

ANDE.Sex=D.Sex);

Intheabovenestedquery, wemust qualifyE.SexbecauseitreferstotheSexattributeof

EMPLOYEE from the outer query, and DEPENDENT also has an attribute called Sex.

 CorrelatedNestedQueries

WheneveraconditionintheWHEREclauseofanestedqueryreferencessome attributeofa relation

declared in the outer query, the two queries are said to be correlated.

Example:

SELECT E.Fname, E.Lname

FROM EMPLOYEE

ASEWHEREE.SsnIN(SELECTEs

sn FROM DEPENDENT AS D

WHEREE.Fname=D.Dependent_name

ANDE.Sex=D.Sex);

The nested query is evaluated once for each tuple (or combination of tuples) in the outer query. we

can think of query in above example as follows: For each EMPLOYEE tuple, evaluate the nested

query, which retrieves the Essn values for all DEPENDENT tuples with the same sex and name as

that EMPLOYEE tuple; if the Ssn value of the EMPLOYEE tuple is in the result of the nested query,

then select that EMPLOYEE tuple.

 TheEXISTSandUNIQUEFunctionsinSQL

EXISTS Functions

TheEXISTSfunctioninSQLisusedtocheckwhethertheresultofacorrelatednestedqueryis

empty(containsnotuples)ornot.TheresultofEXISTSisaBooleanvalue

• TRUEifthenestedqueryresultcontainsatleastonetuple,or

• FALSEifthenestedqueryresultcontainsnotuples.

For example,thequerytoretrievethenameofeachemployeewhohasadependent withthesame first name

and is the same sex as the employee can be written using EXISTS functions as follows:

SELECTE.Fname,E.Lname

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page5

FROM EMPLOYEE AS E

WHEREEXISTS(SELECT*

FROM DEPENDENT AS D

WHEREE.Ssn=D.EssnANDE.Sex=D.Sex

ANDE.Fname=D.Dependent_name);

Example:Listthenamesofmanagerswhohaveatleastonedependent

SELECTFname,Lname

FROMEMPLOYEE

WHEREEXISTS(SELECT*

FROMDEPENDENT

WHERESsn=Essn)

AND

EXISTS(SELECT*

FROMDEPARTMENT

WHERESsn=Mgr_ssn);

Ingeneral,EXISTS(Q)returnsTRUEifthereis at least onetupleintheresult ofthenestedqueryQ, and it

returns FALSE otherwise.

NOTEXISTSFunctions

NOTEXISTS(Q)returnsTRUEiftherearenotuplesintheresultofnestedqueryQ,anditreturns

FALSEotherwise.

Example:Retrievethenamesofemployeeswhohavenodependents.

SELECTFname,Lname

FROMEMPLOYEE

WHERENOTEXISTS(SELECT *

FROMDEPENDENT

WHERESsn=Essn);

For each EMPLOYEE tuple, the correlated nested query selects all DEPENDENT tuples whose

Essn value matches the EMPLOYEE Ssn; if the result is empty, no dependents are related to the

employee, so we select that EMPLOYEE tuple and retrieve its Fname and Lname.

Example:Retrievethenameof eachemployeewhoworksonalltheprojectscontrolled by

department number 5

SELECTFname,Lname

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page6

FROMEMPLOYEE

WHERENOTEXISTS((SELECTPnumber

FROM PROJECT

WHERE Dnum=5)

EXCEPT(SELECTPno

FROM WORKS_ON

WHERESsn=Essn));

UNIQUEFunctions

UNIQUE(Q) returns TRUE if there are no duplicate tuples in the result of query Q; otherwise, it

returnsFALSE.Thiscanbeusedtotestwhethertheresult ofanestedqueryisaset oramultiset.

 ExplicitSetsandRenamingofAttributesinSQL

INSQLitis possibletouseanexplicitsetof valuesintheWHEREclause,ratherthananested query.

Such a set is enclosed in parentheses.

Example:RetrievetheSocialSecuritynumbersof allemployeeswhoworkonprojectnumbers1,2, or 3.

SELECTDISTINCTEssn

FROM WORKS_ON

WHERE Pno IN (1, 2, 3);

InSQL,it ispossibletorename anyattributethatappears intheresultofaquerybyaddingthe qualifier AS

followed by the desired new name

Example:Retrievethelastnameofeachemployeeandhisorhersupervisor

SELECTE.LnameASEmployee_name,

S.Lname AS Supervisor_name

FROMEMPLOYEEASE,

EMPLOYEE AS S

WHEREE.Super_ssn=S.Ssn;

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page7

 JoinedTablesinSQLandOuterJoins

An SQL join clause combines records from two or more tables in a database. It creates a set that

can be saved as a table or used as is. A JOIN is a means for combining fields from two tables by

using values common to each. SQL specifies four types of JOIN

1. INNER,

2. OUTER

3. EQUIJOINand

4. NATURALJOIN

INNERJOIN

An inner join is the most common join operation used in applications and can be regarded as the

default join-type. Inner join creates a new result table by combining column values of two tables (A

and B) based upon the join- predicate (the condition). The result of the join can be defined as the

outcome of first taking the Cartesian product (or Cross join) of all records in the tables (combining

every record in table A with every record in table B)—then return all records which satisfy the join

predicate

Example:SELECT*FROMemployee

INNERJOINdepartmentON

employee.dno=department.dnumber;

EQUIJOINandNATURALJOIN

An EQUIJOIN is a specific type ofcomparator-based join that uses only equality comparisonsin the

join-predicate. Using other comparison operators (such as <) disqualifies a join as an equijoin.

NATURAL JOIN is a type of EQUIJOIN where the join predicate arises implicitly by comparing all

columns in both tables that have the same column-names in the joined tables. The resulting joined

table contains only one column for each pair of equally named columns.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page8

If the names of thejoin attributes are not the same in the base relations, it is possible to rename the

attributes so that they match, and then to apply NATURAL JOIN. In this case, the AS construct can

be used to rename a relation and all its attributes in the FROM clause.

CROSS JOIN returns the Cartesian product of rows from tables in the join. In other words, it will

produce rows which combine each row from the first table with each row from the second table.

OUTER JOIN

Anouterjoindoesnotrequireeachrecordinthetwojoinedtablestohaveamatchingrecord. The joined table

retains each record-even if no other matching record exists. Outer joins subdivide further into

• Leftouterjoins

• Rightouterjoins

• Fullouterjoins

Noimplicitjoin-notationforouterjoinsexistsinstandardSQL.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page9

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page10

MULTIWAYJOIN

It is also possible to nest join specifications; that is, one of the tables in a join may itself be a joined

table. This allows the specification of the join of three or more tables as a single joined table, which

is called a multiway join.

Example: For every project located in ‘Stafford’, list the project number, the controlling department

number, and the department manager’s last name,address, and birth date.

SELECTPnumber,Dnum,Lname,Address,Bdate

FROM((PROJECTJOINDEPARTMENTONDnum=Dnumber)

JOINEMPLOYEEONMgr_ssn=Ssn)

WHEREPlocation=‘Stafford’;

 AggregateFunctionsinSQL

Aggregate functions are used to summarize information from multiple tuples into a single-tuple

summary. A number of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and AVG. The

COUNT function returns the number of tuples or values as specified in aquery. The functions SUM,

MAX, MIN, and AVG can be applied to a set or multiset of numeric values and return, respectively,

the sum, maximum value, minimum value, and average (mean) of those values. These functionscan

be used inthe SELECTclause or in a HAVING clause (which we introduce later). The functions MAX

and MIN can also be used with attributes that have nonnumeric domains if the domain values have

a total ordering among one another.

Examples

1. Find the sumofthesalaries of all employees,themaximum salary,theminimumsalary,andthe

average salary.

SELECTSUM(Salary),MAX(Salary),MIN(Salary),AVG(Salary)

FROMEMPLOYEE;

2. Findthesumofthesalariesof allemployeesofthe‘Research’department, aswellas the

maximum salary, the minimum salary, and the average salary in thisdepartment.

SELECTSUM(Salary),MAX(Salary),MIN(Salary),AVG(Salary)

FROM(EMPLOYEEJOINDEPARTMENTONDno=Dnumber)

WHEREDname=‘Research’;

3. Countthenumberofdistinctsalaryvaluesinthedatabase.

SELECTCOUNT(DISTINCTSalary)

FROMEMPLOYEE;

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page11

4. Toretrievethenamesofallemployeeswhohavetwoormoredependents

SELECTLname,Fname

FROMEMPLOYEE

WHERE(SELECTCOUNT(*)

FROMDEPENDENT

WHERESsn=Essn)>= 2;

 Grouping:TheGROUPBYandHAVINGClauses

Grouping is used to create subgroups of tuples before summarization. For example, we may want

to find the average salary of employees in each department or the number of employees who work

on each project. In these cases we need to partition the relation into non overlapping subsets (or

groups) of tuples. Eachgroup (partition) will consist of thetuples that have the same value of some

attribute(s), called the grouping attribute(s).

SQL has a GROUP BY clause for this purpose. The GROUP BY clause specifies the grouping

attributes,whichshouldalso appearintheSELECT clause,sothat thevalue resultingfromapplying each

aggregate function to a group of tuples appears along with the value of the grouping attribute(s).

Example:Foreach department,retrieve thedepartmentnumber,thenumberof employeesinthe

department, and their average salary.

SELECTDno,COUNT(*),AVG(Salary)

FROMEMPLOYEE

GROUPBYDno;

If NULLs exist in the grouping attribute, then a separate group is created for all tuples with a NULL

value in the grouping attribute. For example, if the EMPLOYEE table had some tuples that hadNULL

for the grouping attribute Dno, there would be a separate group for those tuples in the resultof query

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page12

Example: For each project, retrieve the project number, the project name, and the number of

employees who work on that project.

SELECTPnumber,Pname,COUNT(*)

FROMPROJECT,WORKS_ON

WHEREPnumber=Pno

GROUPBYPnumber,Pname;

Above query shows how we can use a join condition in conjunction with GROUP BY. In this case,

the grouping and functions are applied after the joining of the two relations.

HAVING provides a condition on the summary information regarding the group of tuples associated

with each value of the grouping attributes. Only the groups that satisfy the condition are retrieved in

the result of the query.

Example: For each project on which more than two employees work, retrieve the project number,

the project name, and the number of employees who work on the project.

SELECTPnumber,Pname,COUNT(*)

FROMPROJECT,WORKS_ON

WHERE Pnumber=Pno

GROUPBYPnumber,Pname

HAVING COUNT (*) > 2;

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page13

Example: For each project, retrieve the project number, the project name, and the number of

employees from department 5 who work on the project.

SELECTPnumber,Pname,COUNT(*)

FROMPROJECT,WORKS_ON,EMPLOYEE

WHEREPnumber=PnoANDSsn=EssnANDDno=5

GROUPBYPnumber,Pname;

Example: For each department that has morethan five employees, retrieve the department number

and the number of its employees who are making more than $40,000.

SELECTDnumber,COUNT(*)

FROMDEPARTMENT,EMPLOYEE

WHEREDnumber=DnoANDSalary>40000AND

(SELECT Dno

FROMEMPLOYEE

GROUP BY Dno

HAVINGCOUNT(*)>5);

 DiscussionandSummaryofSQLQueries

A retrieval query in SQL can consist of up to six clauses, but only the first two—SELECT and

FROM—are mandatory.The query can span several lines, and is ended by a semicolon. Query

terms are separated by spaces, and parentheses can be used to group relevant parts of a query in

the standard way.The clauses are specified in the following order, with the clauses between square

brackets [...] being optional:

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page14

The SELECT clause lists the attributes or functions to be retrieved. The FROM clause specifies all

relations (tables) needed in the query, including joined relations, but not those in nested queries.The

WHERE clause specifies the conditions for selecting the tuples from these relations, including join

conditions if needed. GROUP BY specifies grouping attributes, whereas HAVING specifies a

condition on the groups being selected rather than on the individual tuples. Finally, ORDER BY

specifies an order for displaying the result of a query.

A query is evaluated conceptually by first applying the FROM clause to identify all tables involved in

the query or to materialize any joined tables followed by the WHERE clause to select and jointuples,

and then by GROUP BY and HAVING. ORDER BY is applied at the end to sort the query result

Each DBMS has special query optimization routines to decide on an execution plan that is efficient

to execute

In general, there are numerous ways to specify the same query in SQL.This flexibility in specifying

queries has advantages and disadvantages.

 The main advantage is that users can choose the technique with which they are most

comfortable when specifying a query. For example, many queries may be specified with join

conditions in the WHERE clause, or by using joined relations in the FROM clause, or with

some form of nested queries and the IN comparison. From the programmer’s and the

system’s pointofviewregarding queryoptimization, it is generally preferable to write aquery

with as little nesting and implied ordering as possible.

 The disadvantage of having numerous ways of specifying the same query is that this may

confuse the user, who may not know which technique to use to specify particular types of

queries. Another problem is that it may be more efficient to execute a query specified in one

way than the same query specified in an alternative way

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page15

 SpecifyingConstraintsasAssertionsandActionsasTriggers

 SpecifyingGeneralConstraintsasAssertionsinSQL

Assertions are used to specify additional types of constraints outside scope of built-in relational

model constraints. In SQL, users can specify general constraints via declarative assertions, using

the CREATE ASSERTION statement of the DDL.Each assertion is given a constraint name and is

specified via a condition similar to the WHERE clause of an SQL query.

Generalform:

CREATEASSERTION<Name_of_assertion>CHECK(<cond>)

Fortheassertiontobesatisfied,theconditionspecifiedafterCHECKclausemustreturntrue.

For example, to specify the constraint that the salary of an employee must not be greater than the

salary of the manager of the department that the employee works for in SQL, we can write the

following assertion:

CREATEASSERTIONSALARY_CONSTRAINT

CHECK(NOTEXISTS(SELECT*FROMEMPLOYEEE,EMPLOYEEM,

DEPARTMENT D WHERE E.Salary>M.Salary AND

E.Dno=D.DnumberANDD.Mgr_ssn=M.Ssn));

The constraint name SALARY_CONSTRAINTis followedby thekeywordCHECK, which is followed

by a condition in parentheses that must hold true on every database state for the assertion to be

satisfied. The constraint name canbe used later to refer totheconstraintor tomodifyor dropit. Any

WHEREclauseconditioncanbeused, butmanyconstraintscanbespecifiedusingtheEXISTSand NOT

EXISTS style of SQL conditions.

By including this query inside a NOT EXISTS clause, the assertion will specify that the result ofthis

query must beemptysothat thecondition will always beTRUE. Thus, theassertionisviolated if the

result of the query is not empty

Example:considerthebankdatabasewiththefollowingtables

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page16

1. WriteanassertiontospecifytheconstraintthattheSumofloanstakenbyacustomer doesnot exceed

100,000

CREATEASSERTIONsumofloans

CHECK(100000>=ALL

SELECTcustomer_name,sum(amount)

FROMborrowerb,loanl

WHEREb.loan_number=l.loan_number

GROUPBYcustomer_name);

2. WriteanassertiontospecifytheconstraintthattheNumberofaccountsforeachcustomerina given

branch is at most two

CREATEASSERTIONNumAccounts

CHECK(2>=ALL

SELECTcustomer_name,branch_name,count(*)

FROM accountA,depositorD

WHEREA.account_number=D.account_number

GROUPBYcustomer_name,branch_name);

 IntroductiontoTriggersinSQL

A trigger is a procedure that runs automatically when a certain event occurs in the DBMS. In many

cases it is convenient to specify the type of action to be taken when certain events occur and when

certain conditions are satisfied. The CREATE TRIGGER statement is used to implement such

actions in SQL.

Generalform:

CREATETRIGGER<name>

BEFORE|AFTER|<events>

FOREACHROW|FOREACHSTATEMENT

WHEN(<condition>)

<action>

Atriggerhasthreecomponents

1. Event:Whenthiseventhappens,thetriggerisactivated

 Threeeventtypes:Insert,Update,Delete

 Twotriggeringtimes:Beforetheevent

Aftertheevent

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page17

2. Condition(optional):Iftheconditionistrue,thetriggerexecutes,otherwise

skipped

3. Action:Theactionsperformedbythetrigger

WhentheEventoccursandConditionistrue,executetheAction

Thistriggerisactivatedwhenaninsertstatement is

issued, but before the new record is inserted

This trigger is activated when an
updatestatementisissuedandaftertheupdat
eis executed

Doesthetriggerexecuteforeachupdatedordeletedrecord,oronceforthe entire statement

?. We define such granularity as follows:

Thisistheevent

Thisisthegranularity

Thistriggerisactivatedonce(perUPDATE

statement) after all records are updated
Thistriggerisactivatedbeforedeletingeach

record

CreateTriggerXYZ

BeforeDeleteON<tablename> For

each row

….

CreateTriggerXYZ

AfterUpdateON<tablename>

Foreachstatement

….

CreateTriggerABC

BeforeInsertOn

Students

CreateTrigger<name>

Before|After Insert|Update|Delete

ForEachRow|ForEach Statement

….

CreateTriggerXYZ

AfterUpdateOnStudents

….

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page18

Intheaction, youmaywanttoreference:

• Thenewvaluesofinsertedorupdatedrecords(:new)

• Theoldvaluesofdeletedorupdatedrecords(:old)

Inside“When”,the“new”and “old”
should not have “:”

Triggerbody

Insidethetriggerbody,they should
have “:”

Examples:

1) Iftheemployeesalaryincreasedbymorethan10%,thenincrementtherankfieldby1.

InthecaseofUpdateeventonly,wecanspecifywhichcolumns

CreateTriggerEmpSal
BeforeUpdateOfsalaryOnEmployee
ForEachRow Begin

IF(:new.salary>(:old.salary*1.1))Then
:new.rank:=:old.rank+1;

End IF;
End;

/

Wechangedthenewvalueofrankfield

Theassignmentoperatorhas“:”

2) KeepthebonusattributeinEmployeetablealways3%ofthesalaryattribute

Indicatetwoeventsatthesame time

Thebonusvalueisalwayscomputed
automatically

CreateTriggerEmpSal

AfterInsertorUpdateOn Employee

ForEachRow

When(new.salary>150,000)

Begin

if(:new.salary<100,000)…

End;

CreateTriggerEmpBonus
BeforeInsertOrUpdateOnEmployee
ForEachRow Begin

:new.bonus:=:new.salary*0.03;
End;

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page19

3. Supposewewanttocheckwheneveranemployee’ssalaryisgreaterthanthesalaryofhisor her direct

supervisor in the COMPANY database

 Severaleventscantriggerthisrule:

• insertinganewemployeerecord

• changinganemployee’ssalaryor

• changinganemployee’ssupervisor

 Supposethattheactiontotakewouldbetocallanexternalstoredprocedure

SALARY_VIOLATION which will notify the supervisor

CREATETRIGGERSALARY_VIOLATION

BEFOREINSERTORUPDATEOFSALARY,SUPERVISOR_SSN

ON EMPLOYEE

FOREACHROW

WHEN(NEW.SALARY>(SELECTSALARYFROMEMPLOYEE

WHERESSN=NEW.SUPERVISOR_SSN))

INFORM_SUPERVISOR(NEW.Supervisor_ssn,NEW.Ssn);

 ThetriggerisgiventhenameSALARY_VIOLATION,whichcanbeusedtoremoveor

deactivate the trigger later

 Inthisexampletheeventsare:insertinganewemployeerecord,changinganemployee’s salary,

or changing an employee’s supervisor

 TheactionistoexecutethestoredprocedureINFORM_SUPERVISOR

Triggerscanbeusedinvariousapplications,suchasmaintainingdatabaseconsistency,monitoring

database updates.

Assertionsvs.Triggers

 Assertionsdonotmodifythedata,theyonlycheck certainconditions. Triggersaremore

powerful because the can check conditions and also modify thedata

 Assertionsarenotlinkedtospecifictablesinthedatabaseandnotlinkedtospecific events.

Triggers are linked to specific tables and specific events

 Allassertionscanbeimplementedastriggers(oneormore). Not alltriggerscanbe

implemented as assertions

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page20

Example:Triggervs.Assertion

Weneedtriggers,assertionscannotbeused TriggerEvent:BeforeInsert

 Views(VirtualTables)inSQL

 ConceptofaViewinSQL

A view in SQL terminology is a single table that is derived from other tables. other tables can be

base tables or previously defined views. A view does not necessarily exist in physical form; it is

considered to be a virtual table, in contrast to base tables, whose tuples are always physicallystored

in the database. Thislimitsthe possibleupdateoperationsthatcanbe applied to views,butit does not

provide anylimitations onquerying aview. We can think of aview as a way of specifying a table that

we need to reference frequently, even though it may not existphysically.

For example, referring to the COMPANY database, we may frequently issue queries that retrievethe

employee name and the project names that the employee works on. Rather than having to specify

the join of the three tables EMPLOYEE,WORKS_ON, and PROJECT every time we issue this

query, we can define a view that is specified as the result of these joins. Then we can issue queries

on the view, which are specified as single table retrievals rather than as retrievals involving two

joinson threetables. We call the EMPLOYEE,WORKS_ON, and PROJECT tables the defining

tables of the view.

Allnewcustomersopeninganaccountmusthaveopeningbalance>=$100.However,once the
account is opened their balance can fall below that amount.

Create Trigger OpeningBal
BeforeInsertOnCustomer
For Each Row
Begin

IF (:new.balance is null or :new.balance < 100) Then
RAISE_APPLICATION_ERROR(-20004,'Balanceshouldbe>=$100');
End IF;

End;

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page21

 SpecificationofViewsinSQL

In SQL, the command to specify a view is CREATE VIEW. The view is given a (virtual) table name

(or view name), a list of attribute names, and a query to specify the contents of the view. If none of

the view attributes results from applying functions or arithmetic operations, we do not have tospecify

new attribute names for the view, since they would be the same as the names of the attributes of the

defining tables in the default case.

Example1:

CREATEVIEWWORKS_ON1

ASSELECTFname,Lname,Pname,Hours

FROMEMPLOYEE,PROJECT,WORKS_ON

WHERESsn=EssnANDPno=Pnumber;

Example2:

CREATEVIEW DEPT_INFO(Dept_name,No_of_emps,Total_sal)

ASSELECTDname,COUNT(*),SUM(Salary)

FROMDEPARTMENT,EMPLOYEE

WHEREDnumber=Dno

GROUPBYDname;

In example 1, we did not specify any new attribute names for the view WORKS_ON1. In this

case,WORKS_ON1 inherits the names of the view attributes from the defining tables EMPLOYEE,

PROJECT, and WORKS_ON.

Example 2 explicitly specifies new attribute names for the view DEPT_INFO, using a one-to-one

correspondence between the attributes specified in the CREATE VIEW clause and those specifiedin

the SELECT clause of the query that defines the view.

We cannowspecify SQLqueries onaview—orvirtualtable—inthesameway wespecifyqueries involving

base tables.

Forexample,toretrievethelastnameandfirst nameof allemployeeswhoworkonthe‘ProductX’ project, we

can utilize the WORKS_ON1 view and specify the query as :

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page22

SELECTFname,Lname

FROMWORKS_ON1

WHEREPname=‘ProductX’;

The same query would require the specification of two joins if specified on the base relationsdirectly.

one of the main advantages of a view is to simplify the specification of certain queries. Views are

also used as a security and authorizationmechanism.

A view is supposed to be always up-to-date; if we modify the tuples in the base tables on which the

view is defined, the view must automatically reflect these changes. Hence, the view is not realizedor

materialized at the time of view definition but rather at the time when we specify a query on the view.

It is the responsibility of the DBMS and not the user to make sure that the view is kept up-to- date.

If we do not need a view any more, we can use the DROP VIEW command to dispose of it. For

example : DROP VIEW WORKS_ON1;

 ViewImplementation,ViewUpdateandInline Views

Theproblemofefficientlyimplementingaviewforqueryingiscomplex.Twomainapproacheshave been

suggested.

 Onestrategy,calledquerymodification,involvesmodifyingortransformingtheviewquery

(submittedbytheuser)intoaqueryontheunderlyingbasetables.Forexample,thequery

SELECTFname,Lname

FROMWORKS_ON1

WHEREPname=‘ProductX’;

wouldbeautomaticallymodifiedtothefollowingquerybytheDBMS:

SELECTFname,Lname

FROMEMPLOYEE,PROJECT,WORKS_ON

WHERESsn=EssnANDPno=Pnumber

ANDPname=‘ProductX’;

Thedisadvantageofthisapproachisthatit isinefficientforviews definedviacomplexqueriesthat are time-

consuming to execute, especially if multiple queries are going to be applied to the same view within

a short period of time.

 The second strategy, called view materialization, involves physically creating a temporary view

table when the view is first queried and keeping that table on the assumption that other querieson

the view will follow. In this case, an efficient strategy for automatically updating the view table

when the base tables are updated must be developed in order to keep the view up-to-date.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page23

Techniques using the concept of incremental update have been developed for this purpose,

where the DBMS can determine what new tuples must be inserted, deleted, or modified in a

materialized view table when a database update is applied to one of the defining base tables.

The viewis generallykeptasamaterialized(physically stored)table aslong asit isbeingqueried.If the

view is not queried for a certain period of time, the system may then automatically remove the

physical table and recompute it from scratch when future queries reference the view.

Updating of views is complicated and can be ambiguous. In general, an update on a view definedon

a single table without any aggregate functions can be mapped to an update on the underlying base

table under certainconditions. For a viewinvolving joins, an updateoperation may be mapped to

update operations on the underlying base relations in multiple ways. Hence, it is often notpossible

for the DBMS to determine which of the updates is intended.

To illustrate potential problems with updating a view defined on multiple tables, consider the

WORKS_ON1 view, and suppose that we issue the command to update the PNAME attribute of

‘John Smith’ from ‘ProductX’ to ‘ProductY’. This view update is shown in UV1:

UV1: UPDATEWORKS_ON1

SET Pname=‘ProductY’

WHERELname=‘Smith’ANDFname=‘John’

AND Pname=‘ProductX’;

This query can be mapped into several updates on the base relations to give the desired update

effect on the view. In addition, some of these updates will create additional side effects that affect

the result of other queries.

For example, here are two possible updates, (a) and (b), on the base relations corresponding to the

view update operation in UV1:

(a) :UPDATEWORKS_ON

SETPno=(SELECTPnumber

FROMPROJECT

WHERE Pname=‘ProductY’)

WHEREEssnIN(SELECTSsn

FROM EMPLOYEE

WHERELname=‘Smith’ANDFname=‘John’)

AND

Pno=(SELECTPnumber

FROMPROJECT

WHEREPname=‘ProductX’);

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page24

(b) :UPDATEPROJECTSETPname=‘ProductY’

WHEREPname=‘ProductX’;

Update (a) relates ‘John Smith’ to the ‘ProductY’ PROJECT tuple instead of the ‘ProductX’

PROJECT tuple and is the most likely desired update. However, (b) would also give the desired

update effect on the view, but it accomplishes this by changing the name of the ‘ProductX’ tuple in

the PROJECT relation to ‘ProductY’.

It is quite unlikely that the user who specified the view update UV1 wants the update to be

interpreted as in (b), since it also has the side effect of changing all the view tuples with Pname =

‘ProductX’.

Some view updatesmaynot makemuchsense;for example, modifyingthe Total_sal attributeofthe

DEPT_INFO viewdoesnot makesensebecauseTotal_sal isdefined tobe thesum of theindividual

employee salaries. This request is shown as UV2:

UV2: UPDATEDEPT_INFO

SETTotal_sal=100000

WHEREDname=‘Research’;

Alargenumberofupdatesontheunderlyingbaserelationscansatisfythisviewupdate.

Generally, a view update is feasible when only one possible update on the base relations can

accomplish the desired update effect on the view. Whenever an update on the view can be mapped

to more than one update on the underlying base relations, we must have a certain procedure for

choosing one of the possible updates as the most likely one.

Insummary,wecanmakethefollowingobservations:

■ Aviewwithasingledefiningtableisupdatable iftheviewattributescontaintheprimarykeyofthe base

relation, as well as all attributes with the NOT NULL constraint that do not have default values

specified.

■ Viewsdefinedonmultipletablesusingjoinsaregenerallynotupdatable.

■ Viewsdefinedusinggroupingandaggregatefunctionsarenotupdatable.

In SQL, the clause WITH CHECK OPTION must be added at the end of the view definition if a view

is to be updated. This allows the system to check for view updatability and to plan an execution

strategy for view updates. It is also possible to define a view table in the FROM clause of an SQL

query. This is known as an in-line view. In this case, the view is defined within the query itself.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page25

 SchemaChangeStatementsinSQL

Schema evolution commands available in SQL can be used to alter a schema by adding or

dropping tables, attributes, constraints, and other schema elements. This can be done while the

database is operational and does not require recompilation of the database schema.

 The DROPCommand

The DROP command can be used to drop named schema elements, such as tables, domains, or

constraints. One can also drop a schema. For example, if a whole schema is no longer needed, the

DROP SCHEMA command can be used.

There are two drop behavior options: CASCADE and RESTRICT. For example, to remove the

COMPANY databaseschema andall itstables, domains,and otherelements, theCASCADE option is

used as follows:

DROPSCHEMACOMPANYCASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only if it has no

elements in it; otherwise, the DROP command will not be executed. To use the RESTRICT option,

the user must first individually drop each element in the schema, then drop the schema itself.

If a base relation within a schema is no longer needed, the relation and its definition can be deleted

by using the DROP TABLE command. For example, if we no longer wish to keep track of

dependents of employees in the COMPANY database, , we can get rid of the DEPENDENT relation

by issuing the following command:

DROPTABLEDEPENDENTCASCADE;

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is not

referencedin anyconstraints(forexample, by foreign key definitionsinanother relation)orviews or by

any other elements. With the CASCADE option, all such constraints, views, and otherelements that

reference the table being dropped are also dropped automatically from the schema, along with the

table itself.

The DROP TABLE command not only deletes all the records in the table if successful, but also

removes the table definition from the catalog. If it is desired to delete only the records but to leave

the table definition for future use, then the DELETE command should be used instead of DROP

TABLE.

The DROP command can also be used to drop other types of named schema elements, such as

constraints or domains.

 TheALTERCommand

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page26

The definition of a base table or of other named schema elements can be changed by using the

ALTER command. For base tables, the possible alter table actions include adding or dropping a

column (attribute), changing a column definition, and adding or dropping table constraints.

For example, to add an attribute for keeping track of jobs of employees to the EMPLOYEE base

relation in the COMPANY schema , we can use the command:

ALTERTABLECOMPANY.EMPLOYEEADDCOLUMNJobVARCHAR(12);

We must still enter a value for the new attribute Job for each individual EMPLOYEE tuple. This can

be done either by specifying a default clause or by using the UPDATE command individually oneach

tuple. Ifno default clause is specified, the new attribute will have NULLs in all the tuples of the

relation immediatelyafterthecommandisexecuted; hence,theNOTNULL constraintisnot allowed in this

case.

To dropacolumn, wemustchooseeither CASCADE or RESTRICT for drop behavior. If CASCADE is

chosen, all constraints and views that reference the column are dropped automatically from the

schema, alongwiththecolumn. If RESTRICT ischosen, thecommandissuccessfulonlyif noviews or

constraints (or other schema elements) reference the column.

For example, the following command removes the attribute Address from the EMPLOYEE base

table:

ALTERTABLECOMPANY.EMPLOYEEDROPCOLUMNAddressCASCADE;

Itisalsopossibletoalteracolumndefinitionbydroppinganexistingdefault clauseorbydefininga new default

clause. The following examples illustrate this clause:

ALTERTABLECOMPANY.DEPARTMENTALTERCOLUMNMgr_ssnDROPDEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn SET DEFAULT

‘333445555’;

AlterTable-Alter/Modify Column

Tochangethedatatypeofacolumninatable,usethefollowing syntax:

ALTERTABLEtable_name

MODIFYcolumn_namedatatype;

For examplewecanchangethedatatypeofthecolumn named"DateOfBirth"fromdatetoyear in the

"Persons" table using the following SQL statement:

ALTERTABLEPersons

ALTERCOLUMNDateOfBirthyear;

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page27

Noticethatthe"DateOfBirth"columnis nowoftypeyearandisgoingtoholda yearinatwo-or four-digit

format.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page28

Chapter2:DatabaseApplicationDevelopment

 Introduction

We often encounter a situations in which we need the greater flexibility of a general-purpose

programming language in addition to the data manipulation facilities provided by SQL.For example,

we may want to integrate a database applications with GUI or we may want to integrate with other

existing applications.

 AccessingDatabasesfromapplications

SQL commands can be executed from within a program in a host language such as C or Java. A

language to which SQL queries are embedded are called Host language.

 EmbeddedSQL

The use of SQL commands within a host language is called Embedded SQL. Conceptually,

embedding SQL commands ina host language program is straight forward. SQL statements can be

used wherever a statement in the host language is allowed. SQL statements must be clearlymarked

so that a preprocessor can deal with them before invoking the compiler for the host language. Any

host language variable used to pass arguments into an SQL command must be declared in SQL.

Therearetwocomplications:

1. DatatypesrecognizedbySQLmaynotberecognizedbythehostlanguageandviceversa

- This mismatch is addressed by casting data values appropriately before passing them to or

from SQL commands.

2. SQLisset-oriented

-Addressedusingcursors

DeclaringVariablesandExceptions

SQL statements can refer to variables defined in the host program. Such host language variables

must be prefixed by a colon(:) in SQL statements and be declared between the commands

EXECSQLBEGINDECLARESECTIONandEXECSQLENDDECLARESECTION

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page29

The declarations are similar to C, are separated by semicolons. For example, we can declare

variables c_sname, c_sid, c_rating, and c_age (with the initial c used as a naming convention to

emphasize that these are host language variables) as follows:

EXECSQLBEGINDECLARESECTION

charc_sname[20];

long c_sid;

shortc_rating;

float c_age;

EXECSQLENDDECLARESECTION

The first question that arises is which SQL types correspond to the various C types, since we have

just declared a collection of C variables whose values are intended to be read (and possibly set) in

anSQLrun-timeenvironmentwhenanSQLstatementthatreferstothem is executed.TheSQL-92

standard defines such a correspondence between the host language types and SQL types for a

numberofhostlanguages.In our example,c_sname hasthetype CHARACTER(20) whenreferred to in

an SQL statement, c_sid has the type INTEGER, crating has the type SMALLINT, and c_age has

the type REAL.

We also need some way for SQL to report what went wrong if an error condition arises when

executing an SQL statement. The SQL-92 standard recognizes two special variables for reporting

errors, SQLCODE and SQLSTATE.

 SQLCODE is the older of the two and is defined to return some negative value when an

error condition arises, without specifying further just what error a particular negative

integer denotes.

 SQLSTATE, introduced in the SQL-92 standard for the first time, associates predefined

values with several common error conditions, thereby introducing some uniformity to how

errors are reported.

Oneofthesetwovariablesmust bedeclared. TheappropriateCtypeforSQLCODEis longandthe

appropriate C type for SQLSTATE is char [6] , that is, a character string five characters long.

EmbeddingSQL statements

All SQL statements embedded within a host program must be clearly marked with the details

dependent on the host language. In C, SQL statements must be prefixed by EXEC SQL. An SQL

statement can essentially appear in any place in the host language program where a host language

statement can appear.

Example: The following embedded SQL statement inserts a row, whose column values are based

on the values of the host language variables contained in it, into the sailors relation

EXECSQLINSERTINTOsailorsVALUES(:c_sname,:c_sid,:c_rating,:c_age);

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page30

The SQLSTATE variable should be checked for errors and exceptions after each Embedded SQL

statement.SQL provides the WHENEVER command to simplify this task:

EXECSQLWHENEVER[SQLERROR|NOTFOUND][CONTINUE|GOTOstmt]

If SQLERROR is specified and the value of SQLSTATE indicates an exception, control istransferred

to stmt, which is presumably responsible for error and exception handling. Control isalso transferred

to stmt if NOT FOUND is specified and the value of SQLSTATE is 02000, which denotes NO DATA.

 Cursors

A major problem in embedding SQL statements in a host language like C is that an impedance

mismatch occurs because SQL operates on sets of records, whereas languages like C do not

cleanly support a set-of-records abstraction. The solution is to essentially provide a mechanism that

allows us to retrieve rows one at a time from a relation- this mechanism is called a cursor

WecandeclareacursoronanyrelationoronanySQLquery.Onceacursorisdeclared,wecan

 openit(positionsthecursorjustbeforethefirstrow)

 Fetchthenextrow

 Movethecursor(tothenextrow,totherowafterthenext n,tothefirstrowor previousrow etc by

specifying additional parameters for the fetchcommand)

 Closethecursor

Cursor allows ustoretrievetherowsinatablebypositioningthecursor ataparticularrowand reading its

contents.

BasicCursorDefinitionandUsage

Cursorsenableustoexamine, inthehostlanguageprogram, acollectionofrows computedbyan Embedded

SQL statement:

 We usuallyneedtoopenacursoriftheembeddedstatementisaSELECT. wecanavoid opening

a cursor if the answer contains a single row

 INSERT,DELETEandUPDATEstatementsrequirenocursor.somevariantsofDELETE and

UPDATE use a cursor.

Examples:

i) Findthenameandageof asailor,specifiedbyassigningavaluetothehost variablec_sid, declared

earlier

EXECSQLSELECTs.sname,s.age

INTO:c_sname,:c_age

FROM Sailaor s

WHERE s.sid=:c.sid;

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page31

The INTO clause allows us assign the columns of the single answer row to the host variable

c_sname and c_age. Therefore, we do not need a cursor to embed this query in a host language

program.

ii) Computethenameandagesofallsailors witharatinggreaterthanthecurrent valueofthehost variable

c_minrating

SELECTs.sname,s.age

FROMsailorssWHEREs.rating>:c_minrating;

The query returns a collection of rows. The INTO clause is inadequate. The solution is to use a

cursor:

DECLAREsinfoCURSORFOR

SELECTs.sname,s.age

FROMsailorss

WHEREs.rating>:c_minrating;

ThiscodecanbeincludedinaCprogramandonceitisexecuted,thecursorsinfoisdefined. We can

open the cursor by using the syntax:

OPEN sinfo;

A cursor canbethought of as‘pointing’ toarow in thecollection of answers tothe queryassociated with

it.When the cursor is opened, it is positioned just before the first row.

WecanusetheFETCHcommandtoreadthefirstrowofcursorsinfointohostlanguagevariables:

FETCHsinfoINTO:c_sname,:c_age;

When the FETCH statement is executed, the cursor is positioned to point at the next row and the

column values in the row are copied into the corresponding host variables. By repeatedly executing

this FETCH statement, we can read all the rows computed by the query, one row at time.

Whenwearedonewithacursor,wecancloseit:

CLOSEsinfo;

iii) Toretrievethename,addressandsalaryofanemployeespecifiedbythevariablessn

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page32

PropertiesofCursors

Thegeneralformofacursordeclarationis:

DECLAREcursorname[INSENSITIVE][SCROLL]CURSOR [WITH

HOLD]

FORsomequery

[ORDERBYorder-item-list]

[FORREADONLYIFORUPDATE]

A cursor can be declared to be a read-only cursor (FOR READ ONLY) or updatable cursor (FOR

UPDATE).If it is updatable, simple variants of the UPDATE and DELETE commands allow us to

update or delete the row on which the cursor is positioned. For example, if sinfo is an updatable

cursor and open, we can execute the following statement:

UPDATESailorsS

SETS.rating=S.rating-1

WHERECURRENTofsinfo;

A cursor is updatable bydefault unless it is ascrollable or insensitive cursor in which case it isread-

only by default.

If the keyword SCROLL is specified, the cursor is scrollable, which means that variants of the

FETCH command can be used to position the cursor in very flexible ways; otherwise, only the basic

FETCH command, which retrieves the next row, is allowed

If the keyword INSENSITIVE is specified, the cursor behaves as if it is ranging over a private copyof

the collection of answer rows. Otherwise, and by default, other actions of some transaction could

modify these rows, creating unpredictable behavior.

A holdable cursor is specified using the WITH HOLD clause, and is not closed when the transaction

is committed.

OptionalORDERBYclausecanbeusedtospecify asort order.Theorder-item-list isalistoforder- items. An

order-item is a column name, optionally followed by one of the keywords ASC or DESC Every column

mentioned in the ORDER BY clause must also appear in the select-list of the query associated with

the cursor; otherwise it is not clear what columns we should sort on

ORDERBYminageASC,ratingDESC

Theanswerissortedfirst inascendingorderbyminage, andifseveralrowshavethesameminage value,

these rows are sorted further in descending order by rating

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page33

DynamicSQL

Dynamic SQL Allow construction of SQL statements on-the-fly. Consider an application such as a

spreadsheet or a graphical front-end that needs to access data from a DBMS. Such an application

must accept commands from a user and, based on what the user needs, generate appropriate SQL

statementstoretrievethenecessarydata.Insuchsituations,wemaynotbeabletopredictin advance just

what SQL statements need to be executed. SQL provides some facilities to deal with such situations;

these are referred to as Dynamic SQL.

Example:

charc_sqlstring[]={"DELETEFROMSailorsWHERErating>5"};

EXECSQLPREPAREreadytogoFROM:csqlstring;

EXECSQLEXECUTEreadytogo;

 Thefirststatement declarestheCvariable c_sqlstringandinitializesitsvaluetothestring

representation of an SQL command

 ThesecondstatementresultsinthisstringbeingparsedandcompiledasanSQLcommand, with the

resulting executable bound to the SQL variable readytogo

 Thethirdstatementexecutesthecommand

 AnIntroductiontoJDBC

Embedded SQL enables the integration of SQL with a general-purpose programming language. A

DBMS-specific preprocessor transforms the Embedded SQL statements into function calls in the

host language. The details of this translation vary across DBMSs, and therefore even though the

sourcecodecanbecompiledtowork withdifferent DBMSs, thefinalexecutableworks onlywithone

specific DBMS.

ODBCandJDBC,shortforOpenDataBaseConnectivityandJavaDataBaseConnectivity, also enable the

integration of SQL with a general-purpose programming language.

 IncontrasttoEmbeddedSQL,ODBCandJDBCallowasingleexecutabletoaccess

different DBMSs Without recompilation.

Rating minage

8 25.5

3 25.5

7 35.0

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page34

 While Embedded SQL is DBMS-independent only at the source code level, applications

usingODBCorJDBCareDBMS-independentatthesourcecodelevelandatthelevelof the

executable

 In addition, usingODBCor JDBC, an applicationcan accessnot just oneDBMS but several

different ones simultaneously

 ODBC and JDBC achieve portability at the level of the executable by introducing an extra

level of indirection

 AlldirectinteractionwithaspecificDBMShappensthroughaDBMS-specificdriver.

A driver is a software program that translates the ODBC or JDBC calls into DBMS-specific calls.

Drivers are loaded dynamically on demand since the DBMSs the application is going to access

are known only at run-time. Available drivers are registered with a driver manager a driver does

not necessarilyneed to interact with a DBMS that understands SQL. It is sufficient that thedriver

translates the SQL commands from the application into equivalent commands that the DBMS

understands.

An application that interacts with a data source through ODBC or JDBC selects a data source,

dynamically loads the corresponding driver, and establishes a connection with the data source.

There is no limit on the number of open connections. An application can have several open

connections to different data sources. Each connection has transaction semantics; that is,

changes from one connection are visible to other connections only after the connection has

committed its changes. While a connection is open, transactions are executed by submittingSQL

statements, retrieving results, processing errors, and finally committing or rolling back. The

application disconnects from the data source to terminate theinteraction.

 Architecture

ThearchitectureofJDBChasfourmaincomponents:

 Application

 Drivermanager

 Drivers

 Datasources

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page35

Application

 initiatesandterminatestheconnectionwithadatasource

 setstransactionboundaries,submitsSQLstatementsandretrievestheresults

Drivermanager

 LoadJDBCdriversandpassJDBCfunctioncallsfromtheapplicationtothecorrectdriver

 HandlesJDBCinitializationandinformationcallsfromtheapplicationsandcanlogall

function calls

 Performssomerudimentaryerrorchecking

Drivers

 Establishestheconnectionwiththedatasource

 Submitsrequestsandreturnsrequestresults

 Translatesdata, errorformats, anderrorcodesfromaformthatisspecifictothedatasource into the

JDBC standard

Datasources

 Processescommandsfromthedriverandreturns theresults

DriversinJDBCareclassifiedintofourtypesdependingonthearchitecturalrelationshipbetween the

application and the data source:

TypeIBridges:

 Thistypeof drivertranslatesJDBCfunctioncallsintofunctioncallsofanotherAPIthatisnot native

to the DBMS.

 AnexampleisaJDBC-ODBCbridge; anapplicationcanuseJDBCcallstoaccessan ODBC

compliant data source. The application loads only one driver, thebridge.

 Advantage:

 it iseasytopiggybacktheapplicationontoan existinginstallation,andnonew

drivers have to be installed.

 Drawbacks:

 Theincreasednumberoflayersbetweendatasourceandapplicationaffects

performance

 theuserislimitedtothefunctionalitythattheODBCdriversupports.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page36

TypeII DirectTranslationtotheNativeAPIviaNon-Java Driver:

 ThistypeofdrivertranslatesJDBCfunctioncallsdirectly intomethodinvocationsoftheAPI of one

specific data source.

 Thedriverisusually,writtenusingacombinationofC++andJava; itisdynamically linked

and specific to the data source.

 Advantage

 ThisarchitectureperformssignificantlybetterthanaJDBC-ODBCbridge.

 Disadvantage

 ThedatabasedriverthatimplementstheAPIneedstobeinstalledoneach

computer that runs the application.

TypeIII~~NetworkBridges:

 Thedrivertalksover anetworktoamiddleware serverthattranslatestheJDBCrequests into

DBMS-specific method invocations.

 Inthiscase,thedriverontheclientsiteisnotDBMS-specific.

 TheJDBCdriverloadedbytheapplicationcanbequitesmall, astheonlyfunctionalityit needs

to implement is sending of SQL statements to the middlewareserver.

 ThemiddlewareservercanthenuseaTypeIIJDBCdrivertoconnecttothedatasource.

TypeIV-DirectTranslationtotheNativeAPIviaJavaDriver:

 InsteadofcallingtheDBMSAPIdirectly,thedrivercommunicateswiththe DBMS

through Java sockets

 Inthiscase,thedriverontheclient sideiswritten inJava,butitisDBMS-specific.It

translates JDBC calls into the native API of the database system.

 Thissolutiondoesnotrequireanintermediatelayer,andsincetheimplementationisall Java,

its performance is usually quite good.

 JDBCCLASSESANDINTERFACES

JDBC is a collection of Java classes and interfaces that enables database access from programs

written in the Java language. It contains methods for connecting to a remote data source, executing

SQL statements, examining sets of results from SQL statements, transaction management, and

exception handling.

The classes and interfaces are part of the java.sql package. JDBC 2.0 also includes the javax.sql

package, the JDBC Optional Package. The package javax.sql adds, among other things, the

capability of connection pooling and the Row-Set interface.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page37

 JDBCDriverManagement

In JDBC, data source drivers are managed by the Drivermanager class, which maintains a list of all

currentlyloadeddrivers.TheDrivermanagerclasshasmethodsregisterDriver,deregisterDriver,and

getDrivers to enable dynamic addition and deletion of drivers.

The first stepin connecting to a data source is toload the corresponding JDBC driver. Thefollowing

Java example code explicitly loads a JDBC driver:

Class.forName("oracle/jdbc.driver.OracleDriver");

There are two other ways ofregistering a driver. We can include the driver with -Djdbc.

drivers=oracle/jdbc. driver at thecommandline when westart theJava application. Alternatively, we

can explicitly instantiate a driver, but this method is usedonly rarely, as the name of the driver hasto

bespecified inthe application code, andthusthe application becomessensitivetochangesatthe driver

level.

Afterregisteringthedriver,weconnecttothedatasource.

 Connections

AsessionwithadatasourceisstartedthroughcreationofaConnectionobject; Connectionsare specified

through a JDBC URL, a URL that uses the jdbc protocol. Such a URL has the form

jdbc:<subprotocol>:<otherParameters>

Stringuri=..jdbc:oracle:www.bookstore.com:3083..

Connection connection;

try

{

Connection connection =

DriverManager.getConnection(urI,userId,password);

}

catch(SQLExceptionexcpt)

{

System.out.println(excpt.getMessageO);

return;

}

Programcode:EstablishingaConnectionwithJDBC

InJDBC,connectionscanhavedifferentproperties. Forexample,aconnectioncanspecifythe

granularityoftransactions.Ifautocommitissetforaconnection,theneachSQLstatement is

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page38

consideredtobeitsowntransaction.Ifautocommitisoff,thenaseriesof statementsthatcompose a

transaction can be committed using the commit() method of the Connection class, or aborted using

the rollback() method. The Connection class has methods to set theautocommit mode (Connection.

setAutoCommit) and to retrieve the current autocommit mode (getAutoCommit). The following

methods are part of the Connection interface and permit setting and getting other properties:

 public int getTransactionIsolation() throws SQLException and

publicvoidsetTransactionlsolation(int1)throwsSQLException.

- These two functionsget andsetthecurrentlevelofisolationfortransactions handled in the

current connection. All five SQL levels of isolation are possible, and argument l can be set

as follows:

- TRANSACTION_NONE

- TRANSACTION_READ_UNCOMMITTED

- TRANSACTION_READ_COMMITTED

- TRANSACTION_REPEATABLE_READ

- TRANSACTION_SERIALIZABLE

 publicbooleangetReadOnlyOthrowsSQLExceptionand

publicvoidsetReadOnly(booleanreadOnly)throwsSQLException.

- Thesetwofunctionsallowtheusertospecifywhetherthetransactionsexecuteclthrough this

connection are rcad only.

 publicbooleanisClosed()throwsSQLException.

- Checkswhetherthecurrentconnectionhasalreadybeenclosed.

 setAutoCommitandgetAutoCommit.

In case an application establishes many different connections from different parties (such as a Web

server), connections are often pooled to avoid this overhead. A connection pool is a set of

established connections to a data source. Whenever a new connection is needed, one of the

connections from the pool is used, instead of creating a new connection to the data source.

 ExecutingSQLStatements

JDBCsupportsthreedifferentwaysofexecutingstatements:

 Statement

 PreparedStatement,and

 CallableStatement.

The Statementclassis thebaseclassfortheothertwostatementclasses.Itallows ustoquerythe data

source with any static or dynamically generated SQL query.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page39

The PreparedStatement class dynamically generates precompiled SQL statements that can be

used several times; these SQL statements can have parameters, but their structure is fixed whenthe

PreparedStatement object is created.

//initialquantityisalwayszero

Stringsql="INSERTINTOBooksVALUES('?,7,'?,?,0,7)";

PreparedStatementpstmt=con.prepareStatement(sql);

//nowinstantiatetheparameterswithvalues

//a,ssumethatisbn,title,etc.areJavavariablesthat

//containthevaluestobeinserted

pstmt.clearParameters() ;

pstmt.setString(l, isbn);

pstmt.setString(2, title);

pstmt.setString(3, author);

pstmt.setFloat(5, price);

pstmt.setInt(6, year);

intnumRows=pstmt.executeUpdate();

programcode:SQLUpdateUsingaPreparedStatementObject

The SQL query specifies the query string, but uses ''?' for the values of the parameters, which are

setlaterusingmethodssetString,setFloat,andsetlnt.The''?”placeholderscanbeusedanywhere in SQL

statements where they canbe replaced with a value. Examples of places wherethey can appear

include the WHERE clause (e.g., 'WHERE author=?'), or in SQL UPDATE and INSERT

statements. The method setString is one way to set a parameter value; analogous methods are

available for int, float, and date. It is good style to always use clearParameters() before setting

parameter values in order to remove any old data.

There are different ways of submitting the query string to the data source. In the example, we used

the executeUpdate command, which is used if we know that the SQL statement does not returnany

records (SQL UPDATE, INSERT,ALTER, and DELETE statements). The executeUpdate method

returns

- anintegerindicatingthenumberofrowstheSQLstatementmodified;

- 0forsuccessfulexecutionwithoutmodifyinganyrows.

The executeQuery method is used if the SQL statement returns data, such as in a regular SELECT

query. JDBC has its own cursor mechanism in the form of a ResultSet object.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page40

 ResultSets

ResultSet cursors in JDBC 2.0 are very powerful; they allow forward and reverse scrolling and in-

place editing and insertions. In its most basic form, the ResultSet object allows us to read one row

of the output of the query at a time.Initially, the ResultSet is positioned before the first row, and we

havetoretrievethefirstrowwithanexplicit calltothe next()method.Thenextmethodreturnsfalse if there

are nomorerowsin thequeryanswer,and true other\vise.The code fragment shown below illustrates

the basic usage of a ResultSet object:

ResultSetrs=stmt.executeQuery(sqlQuery);

//rs isnowa cursor

//firstcalltors.nextOmovestothefirstrecord

//rs.nextOmovestothenextrow

String sqlQuery;

ResultSetrs=stmt.executeQuery(sqlQuery) while

(rs.next())

{

// processthedata

}

While next () allows us to retrieve the logically next row in the query answer, we can move about in

the query answer in other ways too:

 previous()movesbackonerow.

 absolute(intnum)movestotherowwiththespecifiednumber.

 relative(intnum)movesforwardorbackward(ifnumisnegative)relativetothecurrent

position. relative (-1) has the same effect as previous.

 first()movestothefirstrow,andlast()movestothelastrow.

MatchingJavaandSQLDataTypes

In consideringthe interaction of anapplication with adatasource,the issues we encountered inthe

context of Embedded SQL (e.g., passing information between the application and the data source

through shared variables) arise again. To deal with such issues, JDBC provides special data types

and specifies their relationship to corresponding SQL data types. Table 2.4.4 shows the accessor

methods in a ResultSet object for the most common SQL datatypes.

With these accessor methods, we can retrieve values from the current row of the query result

referenced by the ResultSet object. There are two forms for each accessor method. One method

retrieves values by column index, starting at one, and the other retrieves values by column name.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page41

Thefollowingexampleshowshowtoaccessfieldsofthecurrent ResultSetrowusingaccesssor methods.

ResultSetrs=stmt.executeQuery(sqIQuery);

StringsqlQuerYi

ResultSetrs=stmt.executeQuery(sqIQuery) while

(rs.nextO)

{

isbn= rs.getString(l);

title=rs.getString("TITLE");

// processisbnand title

}

SQLType Javaclass ResultSetgetmethod

BIT Boolean getBoolean()

CHAR String getString()

VARCHAR String getString()

DOUBLE Double getDouble()

FLOAT Double getDouble()

INTEGER Integer getInt()

REAL Double getFloat()

DATE java.sql.Date getDate()

TIME java.sql.Time getTime()

TIMESTAMP java.sql.TimeStamp getTimestamp()

Table2.4.4:ReadingSQLDatatypesfromaResultSetObject

 ExceptionsandWarnings

Similar to the SQLSTATE variable, most of the methods in java. sql can throw an exception of the

type SQLException if an error occurs. The information includes SQLState, a string that describesthe

error (e.g., whether the statement contained an SQL syntax error). In addition to the standard

getMessage() method inherited from Throwable, SQLException has two additional methods that

provide further information, and a method to get (or chain) additionalexceptions:

 public String getSQLState() returns an SQLState identifier based on the SQL:1999

specification

 publicintgetErrorCode()retrievesavendor-specificerrorcode.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page42

 publicSQLExceptiongetNextExceptionOgetsthenextexceptioninachainofexceptions

associated with the current SQLException object.

An SQLWarning is a subclass of SQLException. Warnings are not as severe as errors and the

program can usually proceed without special handling of warnings. Warnings are not thrown like

other exceptions, andthey are not caught as part of the try-catch block around ajava.sql statement.

We need to specifically test whether warnings exist. Connection, Statement, and ResultSetobjects

all have a getWarnings() method with which we can retrieve SQL warnings if they exist. Duplicate

retrieval of warnings can be avoided through clearWarnings(). Statement objects clear warnings

automatically on execution of the next statement; ResultSet objects clear warnings every time a

new tuple is accessed.

TypicalcodeforobtainingSQLWarningslookssimilartothecodeshownbelow: try

{

stmt=con.createStatement();

warning = con.getWarnings();

while(warning != null)

{

/ / handleSQLWarnings / / code to process warning

warning=warning.getNextWarningO;//getnextwarning

}

con.clear\Varnings() ;

stmt.executeUpdate(queryString);

warning = stmt.getWarnings();

while(warning != null)

{

}

} //endtry

/ / handleSQLWarnings / / code to process warning

warning=warning.getNextWarningO;//getnextwarning

catch(SQLExceptionSQLe)

{

// codetohandleexception

} //end catch

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page43

 ExaminingDatabaseMetadata
Wecan use the DatabaseMetaData object to obtain information about the database system itself,as

well as information from the database catalog. For example, the following code fragment shows how

to obtain the name and driver version of the JDBC driver:

Databa..seMetaData md = con.getMetaD<Lta():

System.out.println("Driver Information:");

System.out.println("Name:"+md.getDriverNameO

+";version:"+mcl.getDriverVersion());

The DatabaseMetaDataobjecthasmanymoremethods(inJDBC2.0,exactly 134).Someofthe methods

are:

 public ResultSet getCatalogs() throws SqLException. This function returns a

ResultSet that can be used to iterate over all public int getMaxConnections()

throws SqLException the catalog relations.This function returns the maximum

number of connections possible.

Example:codefragmentthatexaminesalldatabasemetadata

DatabaseMetaData dmd = con.getMetaDataO;

ResultSettablesRS=dmd.getTables(null,null,null,null);

string tableName;

while(tablesRS.next())

{

tableNarne=tablesRS.getString("TABLE_NAME");

/ / print out the attributes of this table

System.out.println("Theattributesoftable"

+tableName+"are:");

ResultSetcolumnsRS=dmd.getColums(null,null,tableName,null);

while (columnsRS.next())

{

System.out.print(colummsRS.getString("COLUMN_NAME")

+"");

}

/ / print out the primary keys of this table

System.out.println("The keys of table" + tableName + " are:");

ResultSetkeysRS=dmd.getPrimaryKeys(null,null,tableName);

while (keysRS. next ())

{

System.out.print(keysRS.getStringC'COLUMN_NAME")+"");

}

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page44

}

7stepsforjdbc:

1. Importthepackage

--importjava.sql.*;

2. Loadandregisterthedriver

--class.forname();

3. Establishtheconnection

--Connectioncon;

4. CreateaStatementobject

--Statementst;

5. Executeaquery

--st.execute();

6. Processtheresult

7. Closetheconnection

Step 2: load the corresponding JDBC driver

Class.forName("oracle/jdbc.driver.OracleDriver");

Step3:createasessionwithdatasourcethroughcreationofConnectionobject.

Connectionconnection=DriverManager.getConnection(database_urI,

userId,password);

EX:Connectioncon=DriverManager.getConnection

("jdbc:oracle:thin:@localhost:1521:xesid","system","ambika");

Step4:createastatementobject

• JDBCsupportsthreedifferentwaysofexecutingstatements:

- Statement

- PreparedStatementand

- CallableStatement.

• TheStatement classisthebaseclassfortheothertwostatementclasses.Itallowsusto query

the data source with any static or dynamically generated SQLquery.

• ThePreparedStatementclassdynamicallygeneratesprecompiledSQLstatementsthat can

be used several times

• CallableStatementareusedtocallstoredproceduresfromJDBC.CallableStatementisa

subclass of PreparedStatement and provides the same functionality.

• Example:

Statementst=con.createStatement();

Step5:executinga query

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page45

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12SQLJ

Stringquery=“select*fromstudentswhereusn=‘4VV15CS001’”;

ResultSet rs=st.executeQuery(query);

Step6:processtheresult

Stringsname=rs.getString(2);

System.out.println(sname);

Step7:closetheconnection

con.close();

import java.sql.*;

publicclassDemo{

publicstaticvoidmain(String[]args){ try

{

Stringquery="select*fromstudentswhereusn=‘4VV15CS001’";

Class.forName("oracle/jdbc.driver.OracleDriver");

Connectioncon=DriverManager.getConnection

("jdbc:oracle:thin:@localhost:1521:xesid","system","ambika");

Statement st=con.createStatement();

ResultSetrs=st.executeQuery(query);

String s=rs.getString(1);

System.out.println(s);

con.close();

}

catch(Exceptione)

{

}

}

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page46

 SQLJ:SQL-JAVA

SQLJenablesapplicationsprogrammerstoembedSQLstatementsinJavacodeinawaythat is compatible

with the Java design philosophy

Example:SQLJcodefragmentthatselectsrecordsfromtheBookstablethatmatchagivenauthor.

Stringtitle;Floatprice;Stringauthor;

#sqliteratorBooks(Stringtitle,Floatprice); Books

books;

#sqlbooks={

SELECT title, price INTO :titIe, :price

FROMBooksWHEREauthor=:author

};

while(books.next()){

System.out.println(books.title()+","+books.price());

}

books.close();

AllSQLJstatements havethespecialprefix #sql.InSQLJ,weretrievetheresultsofSQLqueries with

iterator objects, which are basically cursors. An iterator is an instance of an iterator class.

UsageofaniteratorinSQLJgoesthroughfivesteps:

1. DeclaretheIteratorClass:Intheprecedingcode,thishappenedthroughthestatement #sql

iterator Books (String title, Float price);

ThisstatementcreatesanewJavaclassthatwecanusetoinstantiateobjects.

2. Instantiate an Iterator Object from the New Iterator Class:

WeinstantiatedouriteratorinthestatementBooksbooks;.

3. InitializetheIteratorUsingaSQLStatement:

Inourexample,thishappensthroughthestatement#sqlbooks=....

4. Iteratively,ReadtheRowsFromtheIteratorObject:

ThisstepisverysimilartoreadingrowsthroughaResultSetobjectinJDBC.

5. ClosetheIteratorObject.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page47

Therearetwotypesofiteratorclasses:

• namediterators

• positionaliterators

For named iterators, we specify both the variable type and the name of each column of the iterator.

This allows us to retrieve individual columns by name. This method is used in our example.

For positional iterators, we need to specify only the variable type for each column of the iterator. To

access the individual columns of the iterator, we use a FETCH ... INTO construct, similar to

Embedded SQL

Wecanmaketheiteratorapositionaliteratorthroughthefollowingstatement: #sql

iterator Books (String, Float);

Wethenretrievetheindividualrowsfromtheiteratorasfollows:

while(true)

{

#sql{FETCH:booksINTO:title,:price,}; if

(books.endFetch())

{break:}

// processthebook

}

 STOREDPROCEDURES

Storedprocedureisaset of logicalgroupofSQLstatementswhicharegroupedtoperforma specific

task.

Benefits:

• reducestheamountofinformationtransferbetweenclientanddatabaseserver

• Compilation step is required only once when the stored procedure is created. Then after it

does not require recompilation before executing unless it is modified and reutilizes the same

execution plan whereas the SQL statements need to be compiled every time whenever it is

sent for execution even if we send the same SQL statement everytime

• It helps in re usability of the SQL code because it can be used by multiple users and by

multiple clients since we need to just call thestoredprocedureinsteadofwritingthe same SQL

statement every time. It helps in reducing the development time

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page48

Syntax:

Createorreplaceprocedure<procedureName>[(arg1datatype,arg2datatype)]

Is/As

<declaration>

Begin

<SQL Statement>

Exception

Endprocedurename;

 CreatingaSimpleStoredProcedure

Considerthefollowingschema:

Student(usn:string,sname:string)

Let usnowwriteastoredproceduretoretrievethecountofstudentswithsname‘Akshay’ create

or replace procedure ss

is

stu_cntint;

begin

selectcount(*)intostu_cntfromstudentswheresname='AKSHAY';

dbms_output.put_line('the count of student is :' || stu_cnt);

endss;

Storedprocedurescanalsohaveparameters. TheseparametershavetobevalidSQLtypes,and have one

of three different modes: IN, OUT, or INOUT.

 INparametersareargumentstothestoredprocedure

 OUTparametersarereturnedfromthestoredprocedure; itassignsvaluestoallOUT

parameters that the user can process

 INOUTparameterscombinethepropertiesofINandOUTparameters:Theycontainvalues to be

passed to the stored procedures, and the stored procedure can set their values as return

values

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page49

Example:

CREATEPROCEDUREAddlnventory(

IN book_isbn CHAR(lO),

INaddedQtyINTEGER)

UPDATEBooksSETqty_in_stock=qtyjn_stock+addedQty WHERE

bookjsbn = isbn

InEmbeddedSQL,theargumentstoastoredprocedureareusuallyvariablesinthehostlanguage. For

example, the stored procedure AddInventory would be called as follows:

EXECSQLBEGINDECLARESECTION

charisbn[lO];

longqty;

EXECSQLENDDECLARESECTION

// set isbnandqtytosome values

EXECSQLCALL AddInventory(:isbn,:qty);

Storedproceduresenforcestricttypeconformance:IfaparameterisoftypeINTEGER, itcannot be called

with an argument of type VARCHAR.

Procedureswithoutparametersarecalledstaticproceduresandwithparametersarecalled

dynamicprocedures.

Example:storedprocedurewithparameter

createorreplaceprocedureemp(Essnint) as

eNamevarchar(20);

begin

selectfnameintoeNamefromemployeewheressn=Essnanddno=5;

dbms_output.put_line(' the employee name is :'||Essn ||eName);

end emp;

 CallingStored Procedures

StoredprocedurescanbecalledininteractiveSQLwiththeCALLstatement: CALL

storedProcedureName(argl, arg2, .. ,argN);

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page50

CallingStoredProceduresfromJDBC

We can call stored procedures from JDBC using the CallableStatment class.A stored procedure

could containmultiple SQL statementsoraseries of SQLstatements-thus, theresult couldbemany

different ResultSet objects.We illustrate the case when the stored procedure result is a single

ResultSet.

CallableStatementcstmt=con.prepareCall("{callShowNumberOfOrders}");

ResultSet rs = cstmt.executeQuery();

while(rs.next())

CallingStoredProceduresfromSQLJ

Thestoredprocedure'ShowNumberOfOrders'iscalledasfollowsusingSQLJ:

//createthecursorclass

#sqlIteratorCustomerInfo(intcid,Stringcname,intcount);

// createthecursor

CustomerInfocustomerinfo;

// callthestoredprocedure

#sqlcustomerinfo={CALLShowNumberOfOrders};

while (customerinfo.next()

{

}

 SQL/PSM

System.out.println(customerinfo.cid()+","+

customerinfo.count()) ;

SQL/PersistentStoredModulesisanISOstandardmainlydefininganextensionofSQLwith procedural

language for use in stored procedures.

InSQL/PSM,wedeclareastoredprocedureasfollows:

CREATEPROCEDUREname(parameter1,...,parameterN)

local variable declarations

procedurecode;

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page51

Wecandeclareafunctionsimilarlyasfollows:

CREATEFUNCTIONname(parameterl,...,parameterN)

RETURNS sqIDataType

localvariabledeclarations

function code;

Example:

CREATEFUNCTIONRateCustomer(INcustIdINTEGER,INyearINTEGER)

RETURNS INTEGER

DECLAREratingINTEGER;

DECLAREnumOrdersINTEGER;

SETnumOrders=(SELECTCOUNT(*)FROMOrders0WHEREO.tid=custId); IF

(numOrders> 10) THEN rating=2;

ELSEIF(numOrders>5)THENrating=1;

ELSE rating=O;

ENDIF;

RETURNrating;

 We candeclarelocalvariablesusingtheDECLAREstatement.Inourexample,wedeclaretwo local

variables: 'rating', and 'numOrders'.

 PSM/SQLfunctionsreturnvaluesviatheRETURNstatement.Inour example,wereturnthe value

of the local variable 'rating'.

 We canassignvaluestovariableswiththeSETstatement.Inourexample,weassignedthe return

value of a query to the variable 'numOrders'.

 SQL/PSMhasbranchesandloops.Brancheshavethefollowingform: IF

(condition) THEN statements;

ELSEIFstatements;

ELSEIFstatements;

ELSEstatements;

ENDIF

 Loopsareoftheform

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page52

LOOP

statements:

ENDLOOP

Queries can be used as part of expressions in branches; queries that return a single value can be

assigned to variables.We can use the same cursor statements as in Embedded SQL (OPEN,

FETCH, CLOSE), but we do not need the EXEC SQL constructs, and variables do not have to be

prefixed by a colon ':'.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page53

Chapter3:InternetApplications

 Introduction

Data-intensive is used to describe applications with a need to process large volumes of data.

The volume of datathat is processed can be in the size of terabytes and petabytesandthis type of

data is also referred as big data. Data-intensive computing is used in many applications ranging

from social networking to computational science where a large amount of data needs to be

accessed, stored, indexed and analyzed. It is more challenging as the amount of data keeps on

accumulating over time and the rate at which the data is generating also increases

 THETHREE-TIERAPPLICATIONARCHITECTURE

Data-intensiveInternet applicationscanbeunderstoodintermsofthreedifferentfunctional components:

1. Datamanagement

2. Applicationlogic

3. Presentation

ThecomponentthathandlesdatamanagementusuallyutilizesaDBMSfordatastorage,but application

logic and presentation involve much more than just the DBMS itself.

 Single-Tier

Initially, data-intensive applications were combined into a single tier, including the DBMS,application

logic, and user interface. The application typically ran on a mainframe, and users accessed it

through dumb terminals that could perform only data input and display.

Figure3.2.1:ASingle-TierArchitecture

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page54

 Benefit

• easilymaintainedbyacentraladministrator

 Drawback:

• Usersexpectgraphicalinterfacesthatrequiremuchmorecomputationalpowerthan

simple dumb terminals.

• Donotscaletothousandsofusers

 Two-tierarchitectures

Two-tier architectures, often also referred to as client-server architectures, consist of a client

computer and a server computer, which interact through a well-defined protocol. What part of the

functionality the client implements, and what part is left to the server, can vary.

In the traditional client server architecture, the client implements just the graphical user interface -

suchclientsareoftencalledthinclientstheserverimplementsboththe businesslogicandthedata

management.

Other divisions are possible, such as more powerful clients that implement both user interface and

business logic, or clients that implement user interface and part of the business logic, with the

remaining part being implemented at the server level; such clients are often called thick clients.

Figure3.2.2(a):ATwo-ServerArchitecture:thinclient Figure3.2.2(a):ATwo-ServerArchitecture:thickclient

Thethick-clientmodelhasseveraldisadvantageswhencomparedtothethinclientmodel

1. Thereis no central placeto update and maintainthe business logic,sincethe application code runs

at many client sites.

2. A large amount of trust is required between the server and the clients. As an exampIe, theDBMS

of abankhastotrustthe applicationexecuting at anATM machinetoleavethedatabase in a

consistent state.

3. Thick-client architecturedoes not scale with the number of clients; it typically cannot handle more

than a few hundred clients. The application logic at the client issues SQL queries to the server

and the server returns the query result to the client, where further processing takes place. Large

query results might be transferred between client and server.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page55

Single-tierarchitecturev/sTwo-tierarchitectures

• Compared to the single-tier architecture, two-tier architectures physically separate the user

interface from the data management layer

• To implement two tier architectures, we can no longer have dumb terminals on the client

side, we require computers that run sophisticated presentation code and possibly,application

logic

 Three-TierArchitectures

The thin-client two-tier architecture essentially separates presentation issues from the rest of the

application. The three-tier architecture goes one step further, and also separates application logic

from data management:

• PresentationTier

• MiddleTier

• DataManagementTier

Differenttechnologieshavebeendevelopedtoenabledistributionofthethreetiersof an application across

multiple hardware platforms and different physical sites

Figure3.2.3:TechnologiesfortheThree Tiers

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page56

 OverviewofthePresentation Tier

At the presentation layer, we need to provide forms through which the user can issue requests, and

display responses that the middle tier generates. It is important that this layer of code be easy to

adapt to different display devices and formats; for example, regular desktops versus handheld

devices versus cell phones. This adaptivity can be achieved either at the middle tier through

generation of different pages for different types of client, or directly at theclient through style sheets

that specify how the data should be presented. The hypertext markup language (HTML) is the basic

data presentation language.

Technologiesfortheclientsideofthethree-tier architecture

HTMLForms

HTMLformsareacommonwayof communicatingdatafromtheclienttiertothemiddletier. The

general format of a form :

<FORMACTION=“page.jsp"METHOD="GET"NAME="LoginForm">

 -

</FORM>

• ACTION:SpecifiestheURI ofthepagetowhichtheformcontentsaresubmitted. Ifthe

ACTION attribute is absent, then the URI of the current page is used

• METHOD:TheHTTP/1.0methodusedtosubmittheuserinputfromthefilled-outformto the

webserver. There are two choices: GET and POST

• NAME:Thisattributegivestheformaname

AsingleHTMLdocument cancontainmorethanoneform.InsideanHTMLform, wecanhaveany HTML tags

except another FORM element

PassingArgumentstoServer-SideScripts

There are two different ways to submit HTML Form data to the webserver. If the method GET is

used, thenthecontentsof theform are assembled into aquery URI (asdiscussed next) andsent to the

server. If the method POST is used, then the contents of the form are encoded as in the GET

method, butthecontentsaresentinaseparatedata blockinsteadofappendingthemdirectlytothe URI.

Thus, in the GET method the form contents are directly visible to the user as the constructed URI,

whereas in the POST method, the form contents are sent inside the HTTP request message body

and are not visible to the user.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page57

JavaScript

JavaScript is a scripting language at the client tier with which we can add programs to webpages

that run directly at the client. JavaScript is often used for the following types of computation at the

client:

 BrowserDetection: JavaScript canbeusedtodetectthebrowsertypeand loadabrowser-

specific page.

 FormValidation:JavaScriptisusedtoperformsimpleconsistencychecksonformfields

 Browser Control: This includes opening pages in customized windows; examples include

the annoying pop-up advertisements that you see at many websites, which are programmed

using JavaScript.

JavaScriptisusuallyembeddedintoanHTMLdocumentwithaspecialtag,theSCRIPTtag

<SCRIPTLANGUAGE="JavaScript"SRC="validateForm.js"></SCRIPT>

The SCRIPT tag has the attribute LANGUAGE, which indicates the language in which the script is

written. For JavaScript, we setthe language attribute to JavaScript. Another attribute ofthe SCRIPT

tag is the SRC attribute, which specifies an external file with JavaScript code that is automatically

embedded into the HTML document. Usually JavaScript source code files use a '.js' extension.

Style Sheets

A style sheet is a method to adapt the same document contents to different presentation formats. A

style sheet contains instructions that tell a web how to translate the data of a document into a

presentation that is suitable for the client's display. The use of style sheets has many advantages:

• we can reuse the same document many times and display it differently depending on the

context

• we can tailor the display to the reader's preference such as font size, color style, and even

level of detail.

• we can deal with different output formats, such as different output devices (laptops versus

cell phones), different display sizes (letter versus legal paper), and different display media

(paper versus digital display)

• we can standardize the display format within a corporation and thus apply style sheet

conventions to documents at any time.

• changes and improvements to these display conventions can be managed at a centralplace.

Therearetwostylesheet languages:

 XSL

 CSS

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page58

CascadingStyleSheets(CSS)

• CSSwascreatedforHTMLwiththegoalofseparatingthedisplaycharacteristicsof different

formatting tags from the tags themselves

• CSSdefineshowtodisplayHTMLelements.

• Stylesarenormallystoredinstylesheets,whicharefilesthatcontainstyledefinitions.

• ManydifferentHTMLdocuments,suchasalldocumentsinawebsite,canrefertothesame CSS.

• Thus,wecanchangetheformatofawebsitebychangingasinglefile.

• EachlineinaCSSsheetconsistsofthreeparts;aselector,aproperty,andavalue.Theyare

syntactically arranged in the following way:

selector{property:value}

• Theselectoristheelementortagwhoseformatwearedefining.

• Thepropertyindicatesthetag'sattributewhosevaluewewanttosetinthestylesheet

• Example:BODY{BACKGROUND-COLOR:yellow}

P {MARGIN-LEFT: 50px; COLOR: red}

XSL

• XSLisalanguageforexpressingstylesheets

• An XSL style sheet is, like CSS,a file that describes how to display an XML document of a

given type.

• XSL contains the XSL Transformation language, or XSLT, a language that allows us to

transform the input XML document into a XML document with anotherstructure

• For example, with XSLT we can change the order of elements that we are displaying (e.g.;

by sorting them), process elements more than once, suppress elements in one place and

present them in another, and add generated text to the presentation

 OverviewoftheMiddleTier

The middle layer runs code that implements the business logic of the application. The middle tier

code is responsible for supporting all the different roles involved in the application. For example, in

an Internet shopping site implementation, we would like

• customerstobeabletobrowsethecatalogandmakepurchases

• administratorstobeabletoinspectcurrentinventory,and

• dataanalyststoasksummaryqueriesaboutpurchasehistories

• Eachoftheserolescanrequiresupportforseveralcomplexactions

Thefirstgenerationofmiddle-tierapplicationswasstand-aloneprogramswritteninageneral- purpose

programminglanguagesuch asC,C++,andPerl. Programmersquickly realizedthat

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page59

interaction with a stand-alone application was quite costly. The overheads include starting the

application every time it is invoked and switching processes between the webserver and the

application. Therefore, such interactions do not scale to large numbers of concurrent users. Most of

today's large-scale websites use an application server to run application code at the middle tier.

Application server provides the run-time for several technologies that can be used to program

middle-tier application components.

CGI:TheCommonGateway Interface

TheCommonGatewayInterfaceconnectsHTMLformswithapplicationprograms.

 It is a protocol that defines how arguments from forms are passed to programs at the server

side

 CGI is the part of the Web server that can communicate with other programs running on the

server

 With CGI, the Web server can call up a program, while passing user-specific data to the

program(suchaswhat hosttheuserisconnectingfrom, orinputtheuser has suppliedusing HTML

form syntax)

 The program then processes that data and the server passes the program's response back

to the Web browser.

Figure:SimplediagramofCGI

<HTML><HEAD><TITLE>TheDatabaseBookstore</TITLE></HEAD>

<BODY>

<FORMACTION="find_books.cgiIIMETHOD=POST>

Type an author name:

<INPUTTYPE="textIINAME=lauthorName"

SIZE=30 MAXLENGTH=50>

<INPUTTYPE="submitilvalue="Sendit">

<INPUTTYPE=lreset"VALUE="ClearformII>

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page60

</FORM>

</BODY></HTML>

Programfragment:ASample'webPageWhereFormInputIsSenttoaCGIScript

ApplicationServers

Application logic can be enforced through server-side programs that are invoked using the CGl

protocol. However, since each page request results in the creation of a new process, this solution

does not scale well to a large number of simultaneous requests. An application server maintains a

pool of threads or processes and uses these to execute requests. Thus, it avoids the startup cost of

creating a new process for each request. They facilitate concurrent access to severalheterogeneous

data sources (e.g., by providing JDBC drivers), and provide session management services.

Fig:ProcessStructurewithCGIScripts

Fig:ProcessStructureintheApplicationServerArchitecture

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page61

Servlets

Java servlets are pieces of Java codethat run on the middle tier, ineither webservers or application

servers. Servlets can build webpages, access databases, and maintain state.Servlets usuallyhandle

requests from HTML forms and maintain state between the client and theserver.

Servlets are compiled Java classes executed and maintained by a servlet container. The servlet

container manages the lifespan of individual servlets by creating and destroying them. Although

servlets can respond to any type of request, they are commonly used to extend the applications

hosted by webservers.

JavaServerPages

Java Server Pages (JSP) is a server-side programming technology that enables the creation of

dynamic, platform-independent method for building Web-based applications. JSP have access tothe

entire family of Java APIs, including the JDBC API to access enterprisedatabases

JavaServer pages (.JSPs) interchange the roles of output amI application logic. JavaServer pages

are writteninHTMLwithservlet-likecodeembedded inspecial HT1VILtags. Thus, incomparisonto

servlets, JavaServer pages are better suited to quickly building interfaces that have some logic

inside, whereas servlets are better suited for complex application logic.

MaintainingState

There is a need to maintain a user's state across different pages. As an example, consider a user

who wants to make a purchase at the Barnes and Nobblewebsite. The user must first add itemsinto

her shopping basket, which persists while she navigates through the site Thus, we use the notion of

state mainly to remember information as the user navigates through the site.

TheHTTPprotocol is stateless.Wecall aninteractionwith a webserver statelessif noinformation is

retained from one request to the next request. We call an interaction with a webserver stateful, or

we say that state is maintained, if some memory is stored between requests to the server, and

different actions are taken depending on the contents stored.

SincewecannotmaintainstateintheHTTPprotocol, whereshouldwemaintainstate?Thereare basically

two choices:

 We canmaintainstateinthemiddletier,bystoringinformation inthelocalmainmemory of the

application logic, or even in a database system

 Alternatively,wecanmaintainstateontheclientsidebystoringdataintheformofacookie.

MaintainingStateattheMiddleTier

Atthemiddletier,wehaveseveralchoicesastowherewemaintainstate.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page62

 First, we could store the state at the bottom tier, in the database server. The state survives

crashes of the system, but a database access is required to query or update the state, a

potential performance bottleneck

 An alternative is to store state in main memory at the middle tier. The drawbacks are that

this information is volatile and that it might take up a lot of main memory

 We can also store state in local files at the middle tier, as a compromise between the first

two approaches.

MaintainingStateatthePresentationTier:Cookies

A cookie is a collection of (name, value)pairs that can be manipulated at the presentation and

middle tiers. Cookies are easy to use in Java servlets and Java server Pages. They survive several

client sessions because they persist in the browser cache even after the browser is closed. One

disadvantage of cookies is that they are often perceived as as being invasive, and many users

disable cookies in their Web browser; browsers allow users to prevent cookies from being saved on

their machines. Another disadvantage is that the data in a cookie is currently limited to 4KB, but for

most applications this is not a bad limit.

AdvantagesoftheThree-TierArchitecture

Thethree-tierarchitecturehasthefollowingadvantages:

• Heterogeneous Systems: Applications can utilize the strengths of different platforms and

different softwarecomponentsatthedifferenttiers.Itiseasyto modifyorreplacethecodeat any tier

without affecting the other tiers.

• Thin Clients: Clients only need enough computation power for the presentation layer.

Typically, clients are Web browsers.

• Integrated Data Access: In many applications, the data must be accessed from several

sources. This can be handled transparently at the middle tier, where we can centrally

manage connections to all database systems involved.

• Scalability to Many Clients: Each client is lightweight and all access to the system is

through the middle tier. The middle tier can share database connections across clients, andif

the middle tier becomes the bottle-neck, we can deploy several servers executing the middle

tier code; clients can connect to anyone of these servers, if the logic is designed

appropriately.

• Software Development Benefits: By dividing the application cleanly intoparts that address

presentation, data access, and business logic, we gain many advantages. The businesslogic

is centralized, and is therefore easy to maintain, debug, and change. Interaction between

tiers occurs through well-defined, standardized APls.Therefore, each application

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page63

tiercanbebuiltoutofreusablecomponentsthatcanbeindividuallydeveloped, debugged, and

tested.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page64

QuestionBank

1. Discuss how NULLs are treated in comparison operators in SQL. How are NULLs treated when

aggregate functions are applied in an SQL query? How are NULLs treated if they exist ingrouping

attributes?

2. Describe the six clauses in the syntax of an SQL retrieval query. Show what type of constructs

can be specified in each of the six clauses. Which of the six clauses are required and which are

optional?

3. Describe conceptually how an SQL retrieval query will be executed by specifying the conceptual

order of executing each of the six clauses.

4. Explainhow theGROUPBY clause works. What isthe differencebetweentheWHEREand

HAVING clause?

5. Explaininsert,deleteandupdatestatementsinSQLandgiveexampleforeach.

6. Writeanoteon:

i) ViewsinSQL

ii) AggregatefunctionsinSQL

7. ExplainDROPcommandwithan example.

8. Howisviewcreatedanddropped?Whatproblemsareassociatedwithupdatingviews?

9. HowaretriggersandassertionsdefinedinSQL?Explain.

10. ConsiderthefollowingschemaforaCOMPANYdatabase:

EMPLOYEE(Fname,Lname,Ssn,Address,Super-ssn,Salary,Dno) DEPARTMENT

(Dname, Dnumber, Mgr-ssn, Mgr-start-date)

DEPT-LOCATIONS (Dnumber, Dlocation)

PROJECT(Pname,Pnumber,Plocation,Dnum)

WORKS-ON (Ess!!, Pno, Hours)

DEPENDENT(Essn,Dependent-name,Sex,Bdate,Relationship)

write the SQL query for the following:

i) Listthenamesofmanagerswhohaveatleastonedependent.

ii) Retrievethelistofemployeesandtheprojectstheyareworkingon, orderedbydepartment and, within

each department, ordered alphabetically by last name, first name.

iii) Foreachproject,retrievetheprojectnumber,theproject name, andthenumberof

employees who work on that project.

iv) For each project on which more than two employees work, retrieve the project

number,the projectname, andthenumber ofemployees who workontheproject.

v) Foreachproject,retrievetheprojectnumber,theproject name, and thenumberof

employees from department 4 who work on theproject.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page65

11. Consider thefollowingtables:

Works(Pname,Cname,Salary)

Lives(Pname,Street,City)

Located-in(Cname,City)

Manager(Pname,mgrname)

writetheSQLqueryforthe following:

i) Findthenamesofallpersonswholiveinthecity ‘Mumbai’;

ii) Retrievethenamesofallpersonof‘Infosys’ehosesalaryis betweenRs.30,000and

Rs.50,000.

iii) Findthenamesofallpersonswholiveandworkinthesamecity.

iv) Listthenamesofthepeoplewhoworkfor‘Wipro’alongwiththecitiestheylivein.

v) Findtheaveragesalaryofall‘Infosyians’.

12. Considerthefollowingschema

Sailors(sid,sname,rating,age)

Boats(bid,bname,color)

Reserves(sid,bid,day)

writetheSQLqueryforthe following:

i) Retrieve the sailors name who have reserved red and green boats.

ii)Retrievethesailorsnameswithageover20yearsandreservedblackboat.

iii) Retrievethenumberofboatswhicharenotreserved.

iv) RetrievethesailorsnameswhohavereservedgreenboatonMonday.

v) Retrievethesailorsnameswhoisoldestsailorwithrating10.

13. Consider the following schema and write the SQL queries:

STUDENT-ID,SNAME,MAJOR,GPA)

FACULTY(FACULTY_ID,FNAME,DEPT,DESIGNATION,SALARY)

COURSE(COURSE_ID,CNAME,FACULTY_ID)

ENROLL(COURSE_ID,STUDENT_ID,GRADE)

i) Retrievethestudentnamewhoisstudyingunderfacultiesof“Mechanicaldept”.

ii) Retrievethestudent namewhohaveenrolledunderanyofthecourses inwhich‘kumar’ has

enrolled.

iii) Retrievethefacultynamewhoearnsalarywhichis greaterthantheaveragesalaryofall the

faculties.

iv) Retrievethesnamewhoarenotbeetaughtbyfaculty‘kumar’.

v) RetrievethefacultynameswhoareassistantprofessorsofCSEdept.

14. HowdoweuseSQLstatementswithinahostlangl.lage?Howdowecheckforerrorsin

statement execution?

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page66

15. Definecursor.whatpropertiescancursors have?

16. WhatisDynamicSQLandhowisitdifferentfromEmbeddedSQL?

17. WhatisJDBCandwhatareitsadvantages?

18. WhatarethecomponentsoftheJDBCarchitecture?Describefourdifferent architectural

alternatives for JDBC drivers.

19. Withanexample,explainSQLJ?

20. Illustratewithanexamplestoredprocedure.Mentionitsbenefits.

21. Whatisathree-tierarchitecture?'What advantagesdoesit offeroversingletierandtwo-tier

architectures? Give a short overview of the functionality at each of the threetiers.

DatabaseManagementSystem[18CS53]

Module4

Chapter1:DatabaseDesignTheory

 Introduction

 Objective

 IntroductiontoDB design

 InformalDesignGuidelinesforRelationSchemas

 ImpartingClearSemantics toAttributesin Relations

 RedundantInformationinTuplesandUpdateAnomalies

 NULLValuesinTuples

 GenerationofSpuriousTuples

 FunctionalDependencies

 NormalizationofRelations

 PracticalUseofNormalForms

 Definitions ofKeysandAttributesParticipating inKeys

 FirstNormalForm

 SecondNormalForm

 ThirdNormalForm

 GeneralDefinitionofSecondandThirdNormalForm

 Boyce-CoddNormalForm

 MultivaluedDependency andFourthNormalForm

 FormalDefinitionofMultivaluedDependency

 JoinDependenciesand Fifth NormalForm

 InferenceRulesforFunctionalDependencies

 Equivalenceof SetsofFunctionalDependencies

 SetsofFunctionalDependencies

 PropertiesofRelationalDecompositions

 AlgorithmsforRelationalDatabaseSchemaDesign

 Dependency-PreservingandNonadditive(Lossless)JoinDecompositioninto3NF

Schemas

 NonadditiveJoinDecompositionintoBCNF Schemas

Dependency-PreservingandNonadditive(Lossless)JoinDecompositioninto3NF Schemas

 AboutNulls,DanglingTuples,andAlternativeRelationalDesigns

 ProblemswithNULLValuesandDangling Tuples

 OtherDependenciesand NormalForms

 InclusionDependencies

 TemplateDependencies

 FunctionalDependencies BasedonArithmeticFunctionsandProcedures

 Domain-KeyNormalForm

 AssignmentQuestions

 ExpectedOutcome

 FurtherReading

Dept.ofCSE,ATMECE,Mysuru Page1

DatabaseManagementSystem[18CS53]

 Introduction

Database Normalization is a technique of organizing the data in the database.Normalization

is a systematic approach of decomposing tables to eliminate dataredundancy and

undesirable characteristics like Insertion, Update and Deletion Anomalies.It is a multi-step

process that puts data into tabular form by removing duplicated data from the relation

tables. This module discuss the basic and higher normal forms.

 Objectives

 Tostudytheprocessofnormalization andrefinethedatabasedesign

 Tonormalizethe tablesupto 4NFand5NF

 Tostudy lossless and lossy joinoperations

 Tostudyinferencerules

 TostudyotherdependenciesandNormalForms.

 IntroductiontoDBdesign

Each relation schema consists of a number of attributes, and the relational database schema

consists of a number of relation schemas. So far, we have assumed that attributes are grouped

to form a relation schema by using the common sense of the database designer or by mappinga

database schema design from a conceptual data model such as the ER or Enhanced-ER (EER)

data model. These models make the designer identify entity types and relationship types and

their respective attributes, whichleadstoa naturaland logical grouping oftheattributes into

relations.

Database Design deals with coming up with a ‘good’ schema. There are two levels at which we

can discuss the goodness of relation schemas:

1. Thelogical(orconceptual)level—howusersinterprettherelationschemasandthe

meaning of their attributes.

2. Theimplementation(orphysicalstorage)level—howthetuplesinabaserelationare stored

and updated. This level applies only to schemas of baserelations

AnExample

 STUDENTrelationwithattributes:studName,rollNo,gender,studDept

 DEPARTMENTrelationwithattributes:deptName,officePhone,hod

 Severalstudentsbelongtoadepartment

 studDeptgivesthenameofthestudent’s department

Correctschema:

Student Department

Dept.ofCSE,ATMECE,Mysuru Page2

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page3

Incorrectschema:

Studdept

Problemswithbadschema

• Redundantstorageofdata:

- OfficePhone&HODinfo-storedredundantlyoncewitheachstudentthat

belongs to the department

- wastageofdiskspace

• AprogramthatupdatesOfficePhoneofadepartment

- mustchangeitatseveralplaces

- morerunningtime

- error-prone

 InformalDesignGuidelinesforRelationSchemas

 Fourinformalguidelines thatmaybeusedasmeasurestodeterminethequalityof

relation schema design:

1. Makingsurethatthesemanticsoftheattributesisclearintheschema

2. Reducingtheredundantinformationintuples

3. ReducingtheNULLvaluesintuples

4. Disallowingthepossibilityofgeneratingspurioustuples

 Thesemeasuresarenotalwaysindependentofoneanother

 ImpartingClearSemanticstoAttributesinRelations

 semantics of a relation refers to its meaning resulting from the interpretation of attribute

values in a tuple

 Whenever we group attributes to form a relation schema, we assume that attributes

belonging to one relation have certain real-world meaning and a proper interpretation

associated with them

 The easier it is to explain the semantics of the relation, the better the relation schema

design will be

Guideline1

 Designarelationschemasothatitiseasytoexplainitsmeaning

 Do not combine attributes from multiple entity types and relationship types into a single

relation

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page4

• if arelationschemacorrespondstooneentitytypeoronerelationshiptype, itis

straightforward to interpret and to explain its meaning

• iftherelationcorrespondstoamixtureofmultipleentitiesandrelationships,

semanticambiguitieswill result andtherelationcannot beeasilyexplained.

ExamplesofViolatingGuideline1

Fig:schemadiagramforcompanydatabase

 Boththerelationschemashaveclearsemantics

 A tuple in the EMP_DEPT relation schema represents a single employee but includes

additional information— the name (Dname) of the department for which the employee

works and the Social Security number (Dmgr_ssn) of the department manager.

 A tuple in the EMP_PROJ relates an employee to a project but also includes the

employee name (Ename), project name (Pname), and project location(Plocation)

 logically correct but they violate Guideline 1 by mixing attributes from distinct real-world

entities:

• EMP_DEPTmixesattributesofemployeesanddepartments

• EMP_PROJmixesattributesofemployeesandprojectsandtheWORKS_ON

relationship

 Theymaybeusedasviews,buttheycauseproblemswhenusedasbaserelations

 RedundantInformationinTuplesandUpdateAnomalies

 Onegoalofschemadesignistominimizethestoragespaceusedbythebaserelations

 Groupingattributesintorelationschemashasasignificanteffectonstoragespace

 Forexample,comparethespaceusedbythetwobaserelationsEMPLOYEEand

DEPARTMENT with that for an EMP_DEPT baserelation

 In EMP_DEPT, the attribute values pertaining to a particular department (Dnumber,

Dname, Dmgr_ssn) are repeated for every employee who works for thatdepartment

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page5

 In contrast, each department’s information appears only once in the DEPARTMENT

relation. Only the department number Dnumber is repeated in the EMPLOYEE relation

for each employee who works in that department as a foreignkey

Figure1:OnepossibledatabasestatefortheCOMPANYrelationaldatabaseschema

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page6

Figure1:OnepossibledatabasestatefortheCOMPANYrelationaldatabaseschema

Fig:SamplestatesforEMP_DEPTandEMP_PROJresultingfromapplying NATURALJOINtotherelationsinFigure1

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page7

 Storingnaturaljoinsof baserelationsleadstoanadditionalproblemreferredtoas update

anomalies. These can be classified into:

• insertionanomalies

• deletionanomalies,

• modificationanomalies

Insertion Anomalies

 Insertionanomaliescanbedifferentiatedintotwotypes,illustratedbythefollowing

examples based on the EMP_DEPT relation:

1. To insert a new employee tuple into EMP_DEPT, we must include either the attribute

values for the department that the employee works for, orNULLs

- For example, to insert a new tuple for an employee who works in department number

5, we must enter all the attribute values of department 5 correctly so that they are

consistent with the corresponding values for department 5 in other tuples in

EMP_DEPT

- In the design of Employee in fig 1, we do not have to worry about this consistency

problem because we enter only the department number in the employee tuple; all

other attribute values of department 5 are recorded only once in the database, as a

single tuple in the DEPARTMENT relation

2. It is difficult to insert a new department that has no employees as yet in the EMP_DEPT

relation. The only way to do this is to place NULL values in the attributes foremployee

- ThisviolatestheentityintegrityforEMP_DEPTbecauseSsnisitsprimarykey

- This problem does not occur in the design of Figure 1 because a department is

entered in the DEPARTMENT relation whether or not any employees work for it,

andwheneveranemployeeisassignedtothatdepartment,acorrespondingtuple is

inserted in EMPLOYEE.

DeletionAnomalies

 Theproblemofdeletionanomaliesisrelatedtothesecondinsertionanomalysituation just

discussed

- Ifwe delete from EMP_DEPT an employee tuple that happens to represent the

lastemployeeworkingforaparticulardepartment,theinformationconcerningthat

department is lost from the database

- ThisproblemdoesnotoccurinthedatabaseofFigure2becauseDEPARTMENT tuples

are stored separately.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page8

ModificationAnomalies

 In EMP_DEPT, if we change the value of one of the attributes of a particular

department—say, the manager of department 5—we must update the tuples of all

employees who work in that department; otherwise, the database will become

inconsistent

 If we fail to update some tuples, the same department will be shown to have two

different values for manager in different employee tuples, which would bewrong

Guideline2

 Designthebaserelationschemassothatnoinsertion,deletion,ormodification

anomalies are present in the relations

 Ifanyanomaliesarepresent,notethemclearlyandmakesurethattheprogramsthat update

the database will operate correctly

 Thesecondguidelineisconsistentwithand,inaway,arestatementofthefirstguideline

 Theseguidelinesmaysometimeshavetobeviolated inordertoimprovethe

performance of certain queries.

 NULLValuesinTuples

• Ifmanyoftheattributesdonotapplytoalltuplesintherelation,weendupwithmany NULLs in

those tuples

- thiscanwastespaceatthestoragelevel

- mayleadtoproblemswithunderstandingthemeaningoftheattributes

- mayalsoleadtoproblemswithspecifyingJOINoperations

- howtoaccountforthemwhenaggregateoperationssuchasCOUNTorSUMare applied

 SELECTandJOINoperationsinvolvecomparisons; ifNULLvaluesarepresent,the

results may become unpredictable.

 Moreover,NULLscanhavemultipleinterpretations,suchasthefollowing:

• Theattributedoesnotapplytothistuple.Forexample,Visa_statusmaynotapply to U.S.

students.

• Theattributevalueforthistupleisunknown.Forexample,theDate_of_birthmay be

unknown for an employee.

• Thevalueisknownbutabsent;thatis,ithasnotbeenrecordedyet.Forexample, the

Home_Phone_Number for an employee may exist, but may not be available and

recorded yet.

Guideline 3

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page9

 As far as possible, avoid placing attributes in a base relation whose values may

frequently be NULL

 If NULLs are unavoidable, make sure that they apply in exceptional cases only and do

not apply to a majority of tuples in the relation

 Using space efficiently and avoiding joins with NULL values are the two

overridingcriteriathat determine whetherto include thecolumnsthat may have NULLs in a

relation or to have a separate relation for those columns with the appropriate

keycolumns

 For example, if only 15 percent of employees have individual offices,there is little

justification for including an attribute Office_number in the EMPLOYEE relation; rather,a

relation EMP_OFFICES(Essn, Office_number) can be created to include tuples for only

the employees with individual offices.

 GenerationofSpuriousTuples

 Consider the two relation schemas EMP_LOCS and EMP_PROJ1 which can be used

instead of the single EMP_PROJ

 A tuple in EMP_LOCSmeans that the employeewhose name is Enameworks on some

project whose location is Plocation

 A tuple in EMP_PROJ1 refers to the fact that the employee whose Social Security

number is Ssn works Hours per week on the project whose name, number, and location

are Pname, Pnumber, and Plocation.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page10

 Supposethat weusedEMP_PROJ1andEMP_LOCSasthebaserelationsinsteadof

EMP_PROJ. This produces a particularly bad schema design because we cannot

recover the information that was originally in EMP_PROJ from EMP_PROJ1 and

EMP_LOCS

 IfweattemptaNATURALJOINoperationonEMP_PROJ1andEMP_LOCS,theresult

produces many more tuples than the original set of tuples inEMP_PROJ

 Additionaltuplesthat werenot inEMP_PROJarecalled spurioustuplesbecausethey

represent spurious information that is not valid.

 Thespurioustuplesaremarkedbyasterisks(*)

 Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because

when we JOIN them back using NATURAL JOIN, we do not get the correct original

information

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page11

 This is because in this case Plocation is the attribute that relates EMP_LOCS and

EMP_PROJ1, and Plocation is neither a primary key nor a foreign key in either

EMP_LOCS or EMP_PROJ1.

Guideline4

 Design relation schemas sothat they can be joined with equality conditions on attributes

that are appropriately related (primary key, foreign key) pairs in a way that guarantees

that no spurious tuples are generated

 Avoid relations that contain matching attributes that are not (foreign key, primary key)

combinations because joining on such attributes may produce spurioustuples.

 FunctionalDependencies

 Formaltool for analysis of relational schemasthatenables usto detect and describe

some of the problems in precise terms

DefinitionofFunctional Dependency

 A functional dependency is a constraint between two sets of attributes from thedatabase.

 Given a relation R, a set of attributes X in R is said to functionally determine another

attribute Y, also in R, (written X → Y) if and only if each X value is associated with at

most one Y value.

 X is the determinant set and Y is the dependent attribute. Thus, given a tuple and the

values of the attributes in X, one can determine the corresponding value of the Y

attribute.

 The abbreviation for functional dependency is FD or f.d. The set of attributes X is called

the left-hand side of the FD, and Y is called the right-handside.

 Afunctionaldependencyisapropertyofthesemanticsormeaningoftheattributes.

 The database designers will use their understanding of the semantics of the attributes of

R to specify the functional dependencies that should hold on all relation states

(extensions) r of R.

 ConsidertherelationschemaEMP_PROJ;

 From the semantics of the attributes and the relation, we know that the following

functional dependencies should hold:

http://en.wikipedia.org/wiki/Attributes
http://en.wikipedia.org/wiki/If_and_only_if
http://en.wikipedia.org/wiki/Tuple

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page12

a. Ssn→Ename

b. Pnumber→{Pname,Plocation}

c. {Ssn,Pnumber}→Hours

 Thesefunctionaldependenciesspecifythat

(a) thevalueofanemployee’sSocialSecuritynumber(Ssn)uniquely

determines the employee name (Ename)

(b) thevalueofaproject’snumber(Pnumber)uniquelydetermines the

project name (Pname) and location (Plocation),and

(c) acombinationofSsnandPnumbervaluesuniquelydetermines the

number of hours the employee currently works on the project

per week (Hours).

 Alternatively,wesaythatEnameisfunctionallydeterminedby(orfunctionallydependent on)

Ssn, or given a value of Ssn, we know the value of Ename, and soon.

 Relationextensionsr(R)thatsatisfythefunctionaldependencyconstraintsarecalled

legalrelationstates(orlegalextensions)ofR

 Afunctionaldependencyisapropertyoftherelationschema R,notofaparticularlegal relation

state r of R

 Therefore,anFDcannotbeinferredautomaticallyfromagivenrelationextensionrbut must

be defined explicitly by someone who knows the semantics of the attributes ofR

DiagrammaticnotationfordisplayingFDs

• EachFDisdisplayedasahorizontalline

• The left-hand-sideattributes ofthe FDareconnected byverticallines totheline

representing the FD

• Theright-hand-sideattributesareconnectedbythelineswitharrowspointingtowardthe

attributes.

Fig:diagrammaticnotationfordisplayingFDs

Example:

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page13

 ThefollowingFDsmayholdbecausethefourtuplesinthecurrent extensionhaveno

violation of these constraints:

• B →C

• C →B

• {A, B} →C

• {A, B} →D

• {C, D}→B.

 Thefollowingdonot holdbecausewealreadyhaveviolationsoftheminthegiven

extension:

• A→B(tuples1and2violatethisconstraint)

• B→A(tuples2and3violatethisconstraint)

• D→C(tuples3and4violateit)

NormalFormsBasedonPrimaryKeys

Weassumethata

 Setoffunctionaldependenciesisgivenforeachrelation

 Eachrelationhasadesignatedprimarykey

 Thisinformationcombinedwiththetests(conditions)fornormalformsdrivesthe

normalization process for relational schema design

 Firstthreenormalformsforrelationtakesintoaccountallcandidatekeysof a

relation rather than the primary key

 NormalizationofRelations

 Thenormalizationprocess, asfirstproposedbyCodd(1972a),takesarelationschema

through a series of tests to certify whether it satisfies a certain normal form.

 Initially, Coddproposedthreenormalforms, whichhecalledfirst,second,andthird

normal form

 Allthesenormalformsarebasedonasingleanalyticaltool:thefunctionaldependencies among

the attributes of a relation

 Afourthnormalform(4NF) andafifthnormalform(5NF) wereproposed,basedonthe

concepts of multivalued dependencies and join dependencies, respectively

 Normalization of data can be considered a process of analyzing the given relation

schemasbasedontheirFDsandprimarykeystoachievethedesirablepropertiesof

(1) minimizingredundancyand

(2) minimizingtheinsertion,deletion,andupdateanomalies

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page14

 It can be considered as a “filtering” or “purification” process to make the design have

successively better quality

 Unsatisfactory relation schemas that do not meet certain conditions—the normal form

tests—are decomposed into smaller relation schemas that meet the tests and hence

possess the desirable properties.

 Thus,thenormalizationprocedureprovidesdatabasedesignerswiththefollowing:

• Aformalframework for analyzingrelation schemas basedontheir keysand on

the functional dependencies among their attributes

 A series of normal form tests that can be carried out on individual relation

schemas so that the relational database can be normalized to any desireddegree

 Definition: The normalform of a relation refers to the highest normalform condition that it

meets, and hence indicates the degree to which it has been normalized

 PracticalUseofNormalForms

 Normalization is carried out in practice so that the resulting designs are of high quality

and meet the desirable properties

 Database design as practiced inindustry today pays particular attention to normalization

only up to 3NF, BCNF, or at most 4NF.

 Thedatabasedesignersneednotnormalizetothehighestpossiblenormalform

 Relations may be left in a lower normalization status, such as 2NF, for performance

reasons

 Definition: Denormalization is the process of storing the join of higher normal formrelations

as a base relation, which is in a lower normalform.

 DefinitionsofKeysandAttributesParticipatinginKeys

 Superkey: specifies a uniqueness constraint that notwo distinct tuplesinanystater of

R can have the same value

 keyKisasuperkeywiththeadditionalpropertythatremovalofanyattributefromKwill cause K

not to be a superkey any more

 Example:

• Theattributeset {Ssn} isakeybecausenotwoemployeestuplescan have thesame value

for Ssn

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page15

• AnysetofattributesthatincludesSsn—for example,{Ssn, Name,Address}—isa

superkey

 Ifarelationschemahasmorethanonekey,eachiscalledacandidatekey

 Oneofthecandidatekeysisarbitrarilydesignatedtobethe primarykey,andtheothers are

called secondary keys

 Inapracticalrelationaldatabase,eachrelationschemamusthaveaprimarykey

 If nocandidatekeyis known for arelation, theentirerelationcan betreated asa default

superkey

 For example {Ssn} is the only candidate key for EMPLOYEE, so it is also the primarykey

 Definition. An attribute of relation schema R is called a prime attribute of R if it is a

member of some candidate key of R. An attribute is called nonprime if it is not a prime

attribute—that is, if it is not a member of any candidate key

 In WORKS_ON relation Both Ssn and Pnumber are prime attributes whereas other

attributes are nonprime.

 FirstNormalForm

 Definedtodisallowmultivaluedattributes,compositeattributes,andtheircombinations

 It states that the domain of an attribute must include only atomic (simple, indivisible)

values and that the value of any attribute in a tuple must be a single value from the

domain of that attribute

 1NFdisallowsrelationswithinrelationsorrelationsasattributevalueswithintuples

 Theonlyattributevaluespermittedby1NFaresingleatomic(orindivisible)values.

 ConsidertheDEPARTMENTrelationschemashowninFigure below

 PrimarykeyisDnumber

 Weassumethateachdepartmentcanhaveanumberoflocations

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page16

 TheDEPARTMENTschemaandasamplerelationstateareshowninFigurebelow

 As we can see, this is not in 1NF because Dlocations is not an atomic attribute, as

illustrated by the first tuple in Figure

 TherearetwowayswecanlookattheDlocationsattribute:

• The domain of Dlocations contains atomic values, but some tuples can have a set of

these values. In this case, Dlocations is not functionally dependent on the primary key

Dnumber

• The domain of Dlocations contains sets of values and hence is nonatomic. In thiscase,

Dnumber→Dlocations because each set is considered a single member of the attribute

domain

 Ineithercase,theDEPARTMENTrelationisnotin 1NF

Therearethreemaintechniquestoachievefirstnormalformforsucharelation:

1. Remove the attribute Dlocations that violates 1NF and place it in a separate relation

DEPT_LOCATIONS along with the primary key Dnumber of DEPARTMENT. The

primary key of this relation is the combination {Dnumber, Dlocation}. A distinct tuple

in DEPT_LOCATIONS exists for each location of a department. This decomposes

the non-1NF relation into two 1NF relations.

2. Expand the key so that there will be a separate tuple in the original DEPARTMENT

relation for each location of a DEPARTMENT. In this case, the primary

keybecomesthe combination {Dnumber, Dlocation}.This solution hasthe

disadvantage of introducing redundancy in the relation

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page17

3. If a maximum number of values is known for the attribute—for example, if it is

known that at most three locations can exist for a department—replace the

Dlocations attribute by three atomic attributes: Dlocation1, Dlocation2, and

Dlocation3.ThissolutionhasthedisadvantageofintroducingNULLvaluesif most

departments have fewer than three locations. Querying on this attribute becomes

more difficult; forexample, consider how you would write the query: Listthe

departments that have ‘Bellaire’ as one of their locations in thisdesign.

 Of the three solutions, the first is generally considered best because it does not suffer

from redundancy and it is completely general, having no limit placed on a maximum

number of values

 Firstnormalformalsodisallowsmultivaluedattributesthatarethemselvescomposite.

 Thesearecallednestedrelationsbecauseeachtuplecanhavearelationwithinit.

 FigureaboveshowshowtheEMP_PROJrelationcouldappearifnestingisallowed

 Each tuple represents an employee entity, and a relation PROJS(Pnumber, Hours)

within each tuple represents the employee’s projects and the hours per week that

employee works on each project.

 TheschemaofthisEMP_PROJrelationcanberepresentedasfollows:

EMP_PROJ(Ssn, Ename, {PROJS(Pnumber, Hours)})

 Ssn is the primary key of the EMP_PROJ relation and Pnumber is the partial key of the

nested relation; that is, within each tuple, the nested relation must have unique values of

Pnumber

 To normalize this into 1NF, we remove the nested relation attributes into a new relation

and propagate the primary key into it; the primary key of the new relation will combinethe

partial key with the primary key of the original relation

 Decomposition and primary key propagation yield the schemas EMP_PROJ1 and

EMP_PROJ2,

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page18

 SecondNormalForm

 Secondnormalform(2NF)isbasedontheconceptoffullfunctionaldependency

 A functional dependency X → Y is a full functional dependency if removal of any

attribute A from X means that the dependency does not hold any more; that is, for any

attribute A ε X, (X – {A}) does not functionally determineY

 A functional dependency X→Y is a partial dependency if some attribute A ε X can be

removed from X andthe dependency still holds; that is, for some A ε X, (X – {A}) →Y

 Intheabovefigure,{Ssn, Pnumber}→Hoursisafulldependency(neither Ssn→ Hours

nor Pnumber→Hours holds)

 {Ssn,Pnumber}→EnameispartialbecauseSsn→Enameholds

 Definition. ArelationschemaRisin2NF ifeverynonprimeattributeAinRisfully

functionally dependent on the primary key of R

 Thetestfor2NFinvolvestestingforfunctionaldependencieswhoseleft-handside

attributes are part of the primary key

 Iftheprimarykeycontainsasingleattribute,thetestneednotbeappliedatall

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page19

 TheEMP_PROJrelationisin1NFbutisnotin2NF.

 The nonprime attribute Ename violates 2NF because of FD2, as do the nonprime

attributes Pname and Plocation because of FD3

 The functional dependencies FD2 and FD3 make Ename, Pname, and Plocationpartially

dependent onthe primary key{Ssn,Pnumber} of EMP_PROJ, thus violating the 2NF test.

 If a relation schema is not in2NF, it can be second normalized or 2NF normalized into a

number of 2NF relations in which nonprime attributes are associated only with the

part of the primary key on which they are fully functionally dependent.

 Therefore, the functional dependencies FD1, FD2, and FD3 lead to the decomposition of

EMP_PROJ into the three relation schemas EP1, EP2, and EP3 shown inFigure below,

each of which is in 2NF.

 ThirdNormalForm

 Transitivefunctionaldependency

A functional dependency X→Y in a relation schema R is a transitive dependency if

there exists a set of attribute Z that are neither a primary nor a subset of any key of

R(candidate key) and both X Z and Y Z holds

 Example:

• SSNDMGRSSNisatransitiveFDsinceSSNDNUMBERandDNUMBER

DMGRSSNhold

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page20

Dnumberisneitherakeyitselfnorasubsetofthekeyof EMP_DEPT

• SSNENAMEisnon-transitivesincethereisnosetofattributesXwhere SSN

X and X ENAME

 Definition: A relation schema R is in third normal form (3NF) if it is in 2NF and no

non-prime attribute A in R is transitively dependent on the primary key

 The relation schema EMP_DEPT is in 2NF, since no partial dependencies on a keyexist.

However, EMP_DEPT is not in 3NF because of the transitive dependency of Dmgr_ssn

(and also Dname) on Ssn via Dnumber

 We can normalize EMP_DEPT by decomposing it into the two 3NF relation schemas

ED1 and ED2

 ED1andED2representindependententityfactsaboutemployeesanddepartments

 ANATURALJOINoperationonED1andED2willrecovertheoriginalrelation

EMP_DEPT without generating spurious tuples

 ProblematicFD

• Left-handsideispartofprimarykey

• Left-handsideisanon-keyattribute

 2NF and 3NF normalization remove these problem FDs by decomposing the original

relation into new relations

 In general, we want to design our relation schemas so that they have neither partial nor

transitive dependencies because these types of dependencies cause the update

anomalies

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page21

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page22

 GeneralDefinitionofSecondandThirdNormalForm

 Takesintoaccountallcandidatekeysofarelationintoaccount

 Definition of 2NF: A relation schema R is in second normal form (2NF) if every

nonprime attribute A in R is not partially dependent on any key of R

 Consider the relation schema LOTS which describes parcels of land for sale in various

counties of a state

 Suppose that there are two candidate keys: Property_id# and {County_name, Lot#}; that

is, lot numbers are unique only within each county, but Property_id# numbers are unique

across counties for the entire state.

 BasedonthetwocandidatekeysProperty_id#and{County_name,Lot#},thefunctional

dependencies FD1 and FD2 hold

• FD1:Property_id→{County_name,Lot#,Area,Price,Tax_rate}

• FD2:{County_name,Lot#}→{Property_id,Area,Price,Tax_rate}

• FD3:County_name→Tax_rate

• FD4:Area→Price

 We chooseProperty_id#astheprimarykey,butnospecialconsiderationwillbegivento this

key over the other candidate key

 FD3saysthatthetaxrateisfixedforagivencounty(doesnotvarylotbylotwithinthe same

county)

 FD4saysthatthepriceof alotisdeterminedby itsarearegardlessofwhich countyitis in.

 TheLOTSrelationschemaviolatesthegeneraldefinitionof2NFbecauseTax_rateis

partially dependent on the candidate key {County_name, Lot#}, due to FD3

 TonormalizeLOTSinto2NF,wedecomposeitintothetworelationsLOTS1andLOTS2

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page23

 Weconstruct LOTS1 byremovingthe attribute Tax_ratethat violates 2NFfromLOTS

and placing it with County_name (the left-hand side of FD3 that causes the partial

dependency) into another relation LOTS2.

 BothLOTS1andLOTS2arein2NF.

 Definition of 3NF: A relation schema R is in third normal form (3NF) if, whenever a

nontrivial functional dependency X→A holds in R,either (a)X is a superkey of R, or (b)A

is a prime attribute of R

 Accordingtothisdefinition,LOTS2isin3NF

 FD4 in LOTS1 violates 3NF because Area is not a superkey and Price is not a prime

attribute in LOTS1

 To normalize LOTS1 into 3NF, wedecompose it into the relation schemas LOTS1A and

LOTS1B

 Weconstruct LOTS1A by removing the attributePrice that violates 3NFfrom LOTS1and

placing it with Area (the lefthand side of FD4 that causes the transitive dependency) into

another relation LOTS1B.

 BothLOTS1AandLOTS1Barein3NF

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page24

 Boyce-CoddNormalForm

 Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was

found to be stricter than 3NF

 Every relation in BCNF is also in 3NF; however, a relation in 3NF is not necessarily in

BCNF

 Definition. A relation schema R is in BCNF if whenever a nontrivial functional

dependency X→A holds in R, then X is a superkey of R

 The formal definition of BCNF differs from the definition of 3NF in that condition (b) of

3NF, which allows A to be prime, is absent from BCNF. That makes BCNF a stronger

normal form compared to 3NF

 In our example, FD5 violates BCNF in LOTS1A because AREA is not a superkey of

LOTS1A

 FD5satisfies3NFinLOTS1AbecauseCounty_nameisaprimeattribute(conditionb), but

this condition does not exist in the definition ofBCNF

 We can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY. This

decomposition loses the functional dependency FD2 because its attributes no longer

coexist in the same relation after decomposition.

 Inpractice,mostrelationschemasthatarein3NFarealsoin BCNF

 OnlyifX→AholdsinarelationschemaRwithXnotbeingasuperkey andAbeinga prime

attribute will R be in 3NF but not in BCNF

 Example:considertherelationTEACHwiththefollowingdependencies:

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page25

FD1:{Student,Course}→Instructor

FD2:Instructor→Course--meansthateachinstructorteachesonecourse

 {Student,Course}isacandidatekeyforthisrelation

 ThedependenciesshownfollowthepatterninFigurebelowwithStudent as A,Course as B,

and Instructor as C

 Hencethisrelationisin3NFbutnotBCNF

 Decompositionofthisrelationschemaintotwoschemasisnotstraightforwardbecause it may

be decomposed into one of the three following possible pairs:

1. R1(Student,Instructor)andR2(Student,Course)

2. R1(Course,Instructor)andR2(Course,Student)

3. R1(Instructor,Course)andR2(Instructor,Student)

 It is generally not sufficient to check separately that each relation schema in the

database is, say, in BCNF or 3NF

 Rather, the process of normalization through decomposition must also confirm the

existence of additional properties that the relational schemas, taken together, should

possess. These would include two properties:

• The nonadditivejoinorlosslessjoin property,whichguaranteesthatthespurious tuple

generation problem does not occur with respect to the relation schemascreated after

decomposition.

• The dependency preservation property, which ensures that each functional

dependency is represented in some individual relation resulting afterdecomposition.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page26

 We are not able to meet the functional dependency preservation ,but we must meet the

non additive join property

 NonadditiveJoinTestforBinary Decomposition:

AdecompositionD={R1,R2}ofRhasthelosslessjoinpropertywithrespecttoaset of

functional dependencies F on R if and only if either

• TheFD((R1ᴖR2)→(R1-R2)isinF+or

• TheFD ((R1ᴖR2) →(R2-R1)isinF+

 Thethirddecompositionmeetsthetest

R1ᴖR2 is Instructor

R1-R2isCourse

 Hence,theproper decompositionof TEACHintoBCNFrelationsis:

TEACH1(Instructor,Course) and TEACH2(Instructor,Student)

 In general, a relation R not in BCNF can be decomposed so as to meet the nonadditive

join prorperty by the following procedure. It decomposes R successively into set of

relations that are in BCNF:

Let R be the relation not in BCNF, let X R, and let X → A be the FD that

causes violation of BCNF. R may be decomposed into two relations:

R–A XA

IfeitherR-AorXAisnotinBCNF,repeatthe process

 MultivaluedDependencyandFourthNormalForm

 Forexample,considertherelationEMPshowninFigurebelow:

 A tuple in this EMP relation represents the fact that an employee whose name is

Ename works on the project whose name is Pname and has a dependent whose

name is Dname

 Anemployeemayworkonseveralprojectsandmayhaveseveraldependents

 Theemployee’sprojectsanddependentsareindependentofoneanother

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page27

 To keep the relation state consistent, andto avoid any spurious relationship between

the two independent attributes, we must have a separate tuple to represent every

combination of an employee’s dependent and an employee’sproject

 In therelationstate shownintheEMP, the employeeSmithworks on twoprojects ‘X’ and

‘Y’ and has two dependents ‘John’ and ‘Anna’ and therefore there are 4tuples to

represent these facts together

 The relation EMP is an all-key relation (with key made up of all attributes) and

therefore no f.d’s and as such qualifies to be a BCNF relation

 There is a redundancy in the relation EMP-the dependent information is repeated for

every project and project information is repeated for everydependent

 To address this situation, the concept of multivalued dependency(MVD) was

proposed and based on this dependency, the fourth normal form wasdefined

 Multivalued dependencies are a consequence of 1NF which disallows an attribute

in a tuple to have a set of values, and the accompanying process of converting an

unnormalized relation into 1NF

 Informally, whenever two independent 1:N relationships are mixed in the same

relation, R(A, B, C), an MVD may arise

 FormalDefinitionofMultivaluedDependency

Definition. A multivalued dependency X→→Y specified on relation schema R, where X and Y

are bothsubsets of R, specifies thefollowing constraint on anyrelation state r of R: If twotuples t1

andt2exist in r suchthat t1[X] =t2[X], thentwo tuplest3 andt4 shouldalso exist in r withthe

following properties where we use Z to denote (R – (X ∪ Y))

 t3[X]=t4[X]=t1[X]=t2[X].

 t3[Y]=t1[Y]andt4[Y]=t2[Y].

 t3[Z]=t2[Z] andt4[Z]=t1[Z].

Let X= Ename, Y=Pname

t1[Ename]=t2[ename]=Smith

Z=(EMP-(EnameᴜPname))

=Dname

 t3(Ename)=t4(Ename)=t1(Ename)=t2(Ename)=Smith

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page28

 t3(Pname)=t1(Pname)=Xandt4(Pname)=t2(Pname)=Y

 t3(Dname)=t2(Dname)=Annaandt4(Dname)=t1(Dname)=John

 Whenever X→→Yholds,we saythat Xmultidetermines Y. Becauseof the symmetry in

the definition, whenever X →→Y holds inR, so does X →→Z. Hence, X →→ Y implies

X→→Z, and therefore it is sometimes written as X→→Y|Z.

 AnMVDX→→YinRis calledatrivialMVD if

(a) Yis asubsetofX,or

(b) X ∪ Y=R

 Forexample,therelationEMP_PROJECTShasthetrivialMVD

Ename→→Pname

 AnMVDthatsatisfiesneither(a)nor(b)iscalleda nontrivialMVD

 If we have a nontrivial MVD in a relation, we may have to repeat values redundantly in

the tuples

 In the EMP relation the values ‘X’ and ‘Y’ of Pname are repeated with each value of

Dname (or, by symmetry, the values ‘John’ and ‘Anna’ of Dname are repeated with each

value of Pname)

 Thisredundancyisclearlyundesirable.

 We now present the definition of fourth normal form (4NF), which is violated when a

relation has undesirable multivalued dependencies, and hence can be used to identify

and decompose such relations

 Definition: A relation schema R is in 4NF with respect to a set of dependencies F

(that includes functional dependencies and multivalued dependencies) if, for every

nontrivial multivalued dependency X →→ Y in F+X is a superkey for R

 The process of normalizing a relation involving the nontrivial MVDs that is not in 4NF

consists of decomposing it so that each MVD is represented by a separate relationwhere

it becomes a trivial MVD

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page29

 WedecomposeEMPintoEMP_PROJECTSandEMP_DEPENDENTS

 Both EMP_PROJECTS and EMP_DEPENDENTS are in 4NF, because the MVDs

Ename →→ Pname in EMP_PROJECTS and Ename →→ Dname in

EMP_DEPENDENTS are trivial MVDs

 No other nontrivial MVDs hold in either EMP_PROJECTS or EMP_DEPENDENTS. No

FDs hold in these relation schemas either

 Wecanstatethefollowingpoints:

• Anall-keyrelationisalwaysinBCNFsinceithasnoFDs

• An all-key relation suchas theEMP, which has no FDs but hastheMVDEname→→

Pname | Dname, is not in 4NF

• Arelationthatisnot in4NFduetoanontrivialMVDmust bedecomposedtoconvertit into a

set of relations in 4NF

• ThedecompositionremovestheredundancycausedbytheMVD

 JoinDependenciesandFifthNormalForm

 A join dependency(JD), denoted by JD(R1, R2,..., Rn), specified on relation schema

R, specifies a constraint on the states r of R. The constraint states that every legalstate

r of R should have a nonadditive join decomposition into R1, R2, ..., Rn. Hence, for

every such r we have

 A join dependency JD(R1, R2,..., Rn), specifiedon relationschemaR, isa trivial JD if

one of the relation schemas Ri in JD(R1, R2, ..., Rn) is equal to R.

Fifthnormalform(project-joinnormalform)

 A relation schema R is in fifth normal form (5NF) (or project-join normal form(PJNF))

with respect to a set F of functional, multivalued, and join dependencies if, for every

nontrivial join dependency JD(R1, R2, ..., Rn) in F+ every Ri is a superkey ofR.

 Adatabaseissaidtobein5NF,ifandonlyif,

• It'sin4NF

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page30

• If we can decompose table further to eliminate redundancy and anomaly, and when

we re-join the decomposed tables by means of candidate keys, we should not be

losing the original data or any new record set should not arise. In simple words,

joining two or more decomposed table should not lose records nor create new

records.

Fig:TherelationSUPPLYwithnoMVDsisin4NFbutnotin5NFifithastheJD(R1,R2, R3)

Fig:DecomposingtherelationSUPPLYintothe5NFrelationsR1,R2,R3.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page31

Chapter2:NormalizationAlgorithms

 InferenceRulesforFunctionalDependencies

 LetFbethesetoffunctionaldependenciesthatarespecifiedonrelationschemaR

 Theschemadesignerspecifiesthefunctionaldependenciesthataresemantically

obvious

 Numerousotherfunctionaldependenciesholdinalllegalrelationinstancesamongsets of

attributes that can be derived from and satisfy the dependencies inF

 ThoseotherdependenciescanbeinferredordeducedfromtheFDsinF.

 Forexample:

• If each department has one manager, so that Dept_no uniquely determines

Mgr_ssn (Dept_no → Mgr_ssn), and a manager has a unique phone number

called Mgr_phone (Mgr_ssn→Mgr_phone),

• Thenthesetwodependencies together implythat

Dept_no → Mgr_phone

• ThisisaninferredFDandneednot beexplicitlystated inadditionto the

two given FDs.

 Definition. Formally, the set of all dependencies that include F as well as all

dependenciesthatcanbeinferredfrom Fiscalledtheclosureof F; itisdenotedbyF+.

 Forexample,supposethatwespecifythefollowingsetFofobviousfunctional

dependencies on the relation schema EMP_DEPT

 F ={

Ssn→{Ename,Bdate,Address,Dnumber}, Dnumber

→ {Dname, Dmgr_ssn}

}

 Someoftheadditionalfunctionaldependenciesthatwecan inferfromFarethe

following:

• Ssn→{Dname,Dmgr_ssn}

• Ssn→Ssn

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page32

• Dnumber→Dname

 AnFDX→Yisinferredfrom aset of dependenciesFspecifiedonRifX→Yholdsin every

legal relation state r of R

 TheclosureF+ofFisthesetofallfunctionaldependenciesthatcanbeinferredfromF

 Set ofinferencerulescanbeusedtoinfer newdependenciesfromagivensetof

dependencies

 We usethenotation F|=X→ YtodenotethatthefunctionaldependencyX→Yis

inferred from the set of functional dependencies F

 weuseanabbreviatednotationwhendiscussingfunctionaldependencies. We

concatenate attribute variables and drop the commas forconvenience

 TheFD{X,Y}→ZisabbreviatedtoXY→Z, andtheFD{X,Y,Z}→{U, V}isabbreviated to XYZ

→ UV.

 ThreerulesIR1throughIR3arewell-knowninferencerulesforfunctionaldependencies.

 TheyareproposedbyArmstrongandhenceknownasArmstrong’saxioms

• IR1(reflexiverule):IfX⊇Y,thenX→Y.

• IR2(augmentationrule):{X→Y} |=XZ→YZ.

• IR3(transitiverule):{X→Y,Y→Z}|=X→Z.

 Thereflexiverule(IR1)statesthatasetof attributesalwaysdeterminesitselforanyof its

subsets, which is obvious.

 BecauseIR1generatesdependenciesthatarealwaystrue,suchdependenciesare

called trivial.

 Formally,afunctionaldependencyX→YistrivialifX⊇Y;otherwise,itisnontrivial.

 Theaugmentationrule(IR2) saysthat addingthesamesetofattributestoboththe left- and

right-hand sides of a dependency results in another valid dependency

 AccordingtoIR3,functionaldependenciesaretransitive

 TherearethreeotherinferencerulesthatfollowfromIR1,IR2andIR3.Theyare:

• IR4(decomposition,orprojective,rule):{X→YZ}|=X→Y

• IR5(union,oradditive,rule):{X→Y,X→Z}|=X→YZ

• IR6(pseudotransitiverule):{X→Y,WY→Z} |=WX→Z

 The decomposition rule (IR4) says that we can remove attributes from the right-hand

side of a dependency; applying this rule repeatedly can decompose the FD X→{A1, A2,

...,An}intothesetofdependencies{X→A1,X→A2, ...,X→An}.

 The union rule (IR5) allows us to do the opposite; we can combine a set of

dependencies{X→A1,X→A2,...,X→An}intothesingleFDX→{A1,A2,...,An}.

 Thepseudotransitiverule(IR6)allowsustoreplaceasetofattributes Yonthelefthand side of a

dependency with another set X that functionally determines Y, and canbe

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page33

derivedfromIR2andIR3ifweaugmentthefirstfunctionaldependencyX→YwithW

(theaugmentationrule)andthenapplythetransitiverule.

 In other words, the set of dependencies F+, which we called the closure of F, can be

determined from F by using only inference rules IR1 through IR3.

 A systematic way to determine these additional functional dependencies is first to

determine each set of attributes X that appears as a left-hand side of some functional

dependency in F and then to determine the set of all attributes that are dependent onX.

 Definition. For each such set of attributes X, we determine the set X+ of attributes that

are functionally determined by X based on F; X+ is called the closure of X underF.

 Algorithm16.1canbeusedtocalculate X+.

 Algorithm16.1startsbysettingX+ toalltheattributesinX.

 ByIR1,weknowthatalltheseattributesarefunctionallydependentonX.

 Using inference rules IR3 and IR4, we add attributes to X+, using each functional

dependency in F.

 We keep going through all the dependencies in F (the repeat loop) until no more

attributes are added to X+ during a complete cycle (of the for loop) through the

dependencies in F.

 For example, consider the relation schema EMP_PRO. From the semantics of the

attributes, we specify the following set F of functional dependencies that should hold on

EMP_PROJ:

F= { Ssn→ Ename,

Pnumber→{Pname, Plocation},

{Ssn,Pnumber}→ Hours}

 UsingAlgorithm16.1,wecalculatethefollowingclosuresetswithrespecttoF:

• {Ssn}+={Ssn, Ename}

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page34

• {Pnumber}+={Pnumber,Pname,Plocation}

• {Ssn,Pnumber}+={Ssn,Pnumber,Ename,Pname,Plocation,Hours}

 EquivalenceofSetsofFunctionalDependencies

Definition: A set of functional dependencies F is said to cover another set of functional

dependencies E if every FD in E is also in F+; that is, if every dependency in E can be

inferred from F; alternatively, we can say that E is covered by F.

Definition: Two sets of functional dependencies E and F are equivalent if E+ = F+.

Therefore, equivalence means that every FD in E can be inferred from F, and every FDin

F can be inferred from E; thatis, E is equivalent to F if both the conditions—E coversF

and F covers E—hold.

 SetsofFunctionalDependencies

AsetoffunctionaldependenciesFtobeminimalif itsatisfiesthefollowing conditions:

1. .EverydependencyinFhasasingleattributeforitsright-handside.

2. WecannotreplaceanydependencyX→AinFwithadependency

Y→A, whereYisapropersubset ofX, andstillhaveasetofdependenciesthat is

equivalent to F.

5We cannot remove any dependencyfrom F and still have a set

 ofdependencies that is equivalent to F.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page35

 Step2placesFDsinacanonicalformforsubsequenttesting

 Step3constitutesremovalofanextraneousattributeBcontained intheleft-handsideX of a

functional dependency X->A from F when possible

 Step4constitutesremovalof aredundantfunctionaldependency x->A from Fwhen

possible

 Example1:LetthegivensetofFDs beE:{B→A,D→A,AB→D}.We havetofindthe minimal

cover of E.

• Allabovedependenciesareincanonicalform(thatis,theyhaveonlyoneattributeon the

right-hand side), so we have completed step 1 of Algorithm and can proceed to step 2

• In step 2 we need to determine if AB→D has any redundant attribute on the left-hand

side; that is, can it be replaced by B→D or A→D?

• SinceB→A,byaugmentingwith Bonbothsides(IR2), wehave BB→AB,orB→AB

(i).However,AB→Dasgiven (ii).

• Hence by the transitive rule (IR3), we get from (i)and (ii),B → D. Thus AB→D maybe

replaced by B→D.

• We now have a set equivalent to original E, say E: {B→A, D→A, B→D}. No further

reduction is possible in step 2 since all FDs have a single attribute on the left-handside.

• Instep3welookforaredundant FDinE.ByusingthetransitiveruleonB→DandD

→A,wederiveB→A.HenceB→AisredundantinEandcanbeeliminated.

• Therefore,theminimalcoverofEis{B→D,D→A}.

Westart bysetting Ktoalltheattributesof R; wethenremoveoneattributeatatimeandcheck whether the

remaining attributes still form a superkey.

 Algorithm16.2(a)determinesonly onekeyoutofthepossiblecandidatekeysfor R;thekey

returned depends on the order in which attributes are removed from R in step2.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page36

 PropertiesofRelationalDecompositions

Universal relation schema

 Universal relation schemaR = {A1, A2, ..., An}includes all the attributes ofthe

database

 universalrelationassumption:everyattributenameisunique

 ThesetFoffunctionaldependenciesthat shouldholdontheattributesof Risspecified by the

database designers

 Usingthefunctionaldependencies,thealgorithmsdecomposetheuniversalrelation

schema R into a set of relation schemas

D={R1,R2,...,Rm}thatwillbecometherelationaldatabaseschema;Dis calleda

decompositionofR.

AttributePreservationconditionofaDecomposition

 EachattributeinRwillappearinat least onerelationschema Riinthedecompositionso that no

attributes are lost; formally, we have

 Anothergoalofdecompositionistohaveeachindividualrelation Ri inthedecomposition D be

in BCNF or 3NF

 Additional properties of decomposition are needed to prevent from generating spurious

tuples

DesirablePropertiesofDecompositions

 Notalldecompositionofaschemaareuseful

 Werequiretwopropertiestobesatisfied:

i) DependencyPreservationProperty

ii) Nonadditive(Lossless)JoinProperty

DependencyPreservationProperty

 Each functional dependency X→Y specified in F either appeared directly in one of the

relation schemas Ri in the decomposition D or could be inferred from the dependencies

that appear in some Ri

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page37

 We wanttopreservethedependenciesbecauseeachdependencyinFrepresentsa

constraint on the database

 Ifone ofthe dependencies is not represented in some individual relation Ri of the

decomposition,wecannotenforcethisconstraintbydealingwithanindividualrelation

 ItisnotnecessarythattheexactdependenciesspecifiedinFappearthemselvesin

individual relations of the decomposition D.

 Itissufficientthattheunionofthedependenciesthatholdontheindividualrelationsin

DbeequivalenttoF

 Example:DependencyPreservingDecomposition

 Example:DecompositionthatdoesnotPreserveDependency

Nonadditive(Lossless)JoinProperty

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page38

 The nonadditive join property ensures that no spurious tuples result after the application

of PROJECT and JOIN operations

 Thetermlossydesignrefertoadesignthatrepresentsalossofinformation

 If a decomposition does not have the lossless join property, we may get additional

spurious tuples after the PROJECT (π) and NATURAL JOIN (*) operations are applied;

these additional tuples represent erroneous or invalid information

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page39

Example

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page40

TestingBinaryDecompositionsfortheNonadditiveJoinProperty

 AlgorithmsforRelationalDatabaseSchemaDesign

Twoalgorithmsforcreatingarelationaldecompositionfromuniversalrelation

1. Thefirstalgorithmdecomposesauniversalrelationintodependencypreserving3NF

relations that also possess the nonadditive join property

2. ThesecondalgorithmdecomposesauniversalrelationschemaintoBCNFschemasthat

possess the nonadditive join property

Dependency-PreservingandNonadditive(Lossless)Join Decomposition
into 3NF Schemas

Algorithm16.4. RelationalSynthesisinto3NFwithDependencyPreservationandNonadditive Join

Property

• Input:AuniversalrelationR andasetoffunctionaldependenciesFontheattributes of

R.

1. FindaminimalcoverGforF(useAlgorithm16.2).

2. For each left-hand-side X of a functional dependency that appears in G, create a relation

schema in D with attributes {X ∪ {A1} ∪ {A2} ... ∪ {Ak}}, where X→A1, X→A2, ..., X→Ak are

the only dependencies in G with X as left-hand-side (X is the key of thisrelation)

5 If none of the relation schemas in D contains a key of R, then create one more relation

schema in D that contains attributes that form a key of R

6 Eliminate redundant relations from the resulting set of relations in the relational database

schema. A relation R is considered redundant if R is a projection of another relation S inthe

schema; alternately, R is subsumed by S

 Example:Considerthefollowinguniversalrelation:

U(Emp_ssn,Pno,Esal,Ephone,Dno,Pname,Plocation)

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page41

• Emp_ssn, Esal, Ephone refer to the Social Security number, salary, and phone number of

theemployee. Pno, Pname,andPlocationrefertothenumber, name, andlocationof the

project. Dno is department number.

• Thefollowingdependenciesarepresent:

-FD1:Emp_ssn→{Esal,Ephone,Dno}

-FD2:Pno→{Pname, Plocation}

-FD3:Emp_ssn,Pno→{Esal,Ephone,Dno,Pname,Plocation}

• By virtue of FD3, the attribute set {Emp_ssn, Pno} represents a key of the universal

relation.

• Hence F, the set of given FDs includes {Emp_ssn → Esal, Ephone, Dno; Pno→Pname,

Plocation; Emp_ssn, Pno→Esal, Ephone, Dno, Pname, Plocation}.

• By applying the minimal cover , in step 3 we see that Pno is a redundant attribute in

Emp_ssn, Pno → Esal, Ephone, Dno. Moreover, Emp_ssn is redundant in Emp_ssn,

Pno→Pname, Plocation.

• HencetheminimalcoverconsistsofFD1andFD2only

• MinimalcoverG:{Emp_ssn→Esal,Ephone,Dno;Pno→Pname,Plocation}

• By applying Algorithm 16.4 to the above Minimal cover G, we get a 3NF design consistingof

two relations with keys Emp_ssn and Pno as follows:

R1(Emp_ssn,Esal,Ephone, Dno)

R2(Pno,Pname,Plocation)

• In step 3, we generate a relation corresponding to the key(Emp_ssn,Pno) of U. Hence, the

resulting design contains:

R1(Emp_ssn,Esal,Ephone,Dno) R2

(Pno, Pname, Plocation)

R3(Emp_ssn, Pno)

Thisdesignachievesboththedesirabllepropertiesofdependencypreservationandnon additive join

 NonadditiveJoinDecompositionintoBCNFSchemas

Algorithm16.5.RelationalDecompositionintoBCNFwithNonadditive Join

Property

• Input:AuniversalrelationRandasetoffunctionaldependenciesFontheattributesofR.

1. Set D:={R};

2. WhilethereisarelationschemaQinDthatisnotinBCNFdo

{

choosearelationschemaQinDthatisnotinBCNF;

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page42

find a functional dependency X→Y in Q that violates BCNF;

replaceQ inDbytworelationschemas(Q –Y)and(X∪Y);

};

 EachtimethroughtheloopinAlgorithm16.5,wedecomposeonerelationschema Qthat is not

in BCNF into two relation schemas.

 AccordingtoPropertyNJBforbinarydecompositionsandClaim2,thedecompositionD

hasthenonadditivejoinproperty

 Attheendofthealgorithm,allrelationschemas inDwillbeinBCNF

 Example:TEACH relation schema decomposed into TEACH1(Instructor, Student) and

TEACH2(Instructor, Course) because the dependency FD2 Instructor→Course violates

BCNF.

 Instep2ofAlgorithm16.5,itisnecessarytodeterminewhetherarelationschema Qisin BCNF or

not.

 whenever arelationschemaQ has aBCNFviolation, thereexists apair ofattributes Aand B in

Q such that {Q – {A, B} } → A; by computing the closure {Q – {A, B} }+ for each pair of

attributes {A, B} of Q, and checking whether the closure includes A (or B), we candetermine

whether Q is in BCNF.

 Dependency-Preserving and Nonadditive (Lossless) Join

Decomposition into 3NF Schemas

 Itisnotpossibletohaveallthreeofthefollowing:

(1) guaranteednonlossydesign,

(2) guaranteeddependencypreservation,and

(3) allrelationsin BCNF

 Thefirstconditionisamustandcannotbecompromised.

 Thesecondconditionisdesirable,but not amust, andmayhavetoberelaxed ifwe insist

on achieving BCNF.

 Nowwegiveanalternativealgorithmwhereweachieveconditions1and2andonly

guarantee 3NF.

 AsimplemodificationtoAlgorithm16.4,shownasAlgorithm16.6,yieldsa

decomposition D of R that does the following:

■ Preservesdependencies

■ Hasthenonadditivejoinproperty

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page43

■ Issuchthateachresultingrelationschemainthedecompositionisin3NF

 Step3involvesidentifyingakeyKofR.Algorithm16.2(a)canbeusedtoidentifyakeyKof
RbasedonthesetofgivenfunctionaldependenciesF.

 AboutNulls,DanglingTuples,andAlternativeRelationalDesigns

 ProblemswithNULLValuesandDanglingTuples

 Whenever a relational database schema is designed in which two or more relations are

interrelated via foreign keys, particular care must be devoted to watching for potential

NULL values in foreign keys.

 This can cause unexpected loss of information in queries that involve joins on thatforeign

key.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page44

 IfNULLsoccurinotherattributes,suchasSalary,theireffect onbuilt-infunctionssuch as

SUM and AVERAGE must be carefully evaluated.

Dangling tuples mayoccurifwecarryadecompositiontoofar.Supposethatwedecompose the

EMPLOYEE relation in Figure16.2(a)further into EMPLOYEE_1 and EMPLOYEE_2,shown in Figure
16.3(a) and 16.3(b)

Figure16.2:IssueswithNULL-valuejoins.(a)SomeEMPLOYEEtupleshaveNULLforthejoinattribute Dnum
(b)ResultofapplyingNATURALJOINtotheEMPLOYEEandDEPARTMENTrelations.(c)Resultofapplying LEFT
OUTER JOIN to EMPLOYEE and DEPARTMENT.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page45

Figure16.3:Thedanglingtupleproblem.(a)TherelationEMPLOYEE_1 (includesallattributesofEMPLOYEEfrom Figure

16.2(a) except Dnum). (b) The relation EMPLOYEE_2 (includes Dnum attribute with NULL values). (c) The relation

EMPLOYEE_3 (includes Dnum attribute but does not include tuples for which Dnum has NULL values).

 If we apply the NATURAL JOIN operation to EMPLOYEE_1 and EMPLOYEE_2, we get the

original EMPLOYEE relation.

 we mayusethe alternative representation, shown in Figure 16.3(c), where we do not include

a tuplein EMPLOYEE_3 if the employee has not been assigned a department (instead of

including a tuple with NULL for Dnum as in EMPLOYEE_2).

 If we use EMPLOYEE_3 instead of EMPLOYEE_2 and apply a NATURAL JOIN on

EMPLOYEE_1 and EMPLOYEE_3, the tuples for Berger and Benitez will not appear in the

result; these are called dangling tuples in EMPLOYEE_1 because they are represented in

only one of the two relations that represent employees, and hence are lost if we apply an

(INNER) JOIN operation.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page46

 OtherDependenciesandNormalForms

 InclusionDependencies

Inclusiondependenciesweredefinedinordertoformalizetwotypesofinterrelational

constraints:

■ Theforeignkey(orreferentialintegrity)constraintcannotbespecifiedasafunctionalor

multivalued dependency because it relates attributes across relations.

■ Theconstraintbetweentworelationsthatrepresentaclass/subclassrelationshipalsohas no

formal definition in terms of the functional,multivalued, and joindependencies.

 The subset relationship does not necessarily have to be a proper subset. Obviously, the

sets of attributes on which the inclusion dependency is specified—X of R and Y of S—

must have the same number of attributes.

 Inaddition,thedomainsforeachpairofcorrespondingattributesshouldbecompatible.

 For example, we can specify the following inclusion dependencies on the

relationalvschema in Figure 15.1:

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page47

• DEPARTMENT.Dmgr_ssn<EMPLOYEE.Ssn

• WORKS_ON.Ssn<EMPLOYEE.Ssn

• EMPLOYEE.Dnumber<DEPARTMENT.Dnumber

• PROJECT.Dnum<DEPARTMENT.Dnumber

• WORKS_ON.Pnumber<PROJECT.Pnumber

• DEPT_LOCATIONS.Dnumber<DEPARTMENT.Dnumber

 Alltheprecedinginclusiondependenciesrepresentreferentialintegrityconstraints.

 Wecanalsouseinclusiondependenciestorepresent class/subclass.Forexample,inthe

relational schema of Figure 9.6, we can specify the following inclusion dependencies:

• EMPLOYEE.Ssn<PERSON.Ssn

• ALUMNUS.Ssn<PERSON.Ssn

• STUDENT.Ssn<PERSON.Ssn

 TemplateDependencies
 Templatedependenciesprovideatechniqueforrepresentingconstraintsinrelationsthat

typically have no easy and formaldefinitions.

 Therearetwotypesoftemplates:

- tuple-generatingtemplatesand

- constraintgeneratingtemplates.

 Atemplateconsistsofanumberofhypothesistuplesthataremeanttoshowanexample of the

tuples that may appear in one or morerelations.

 Theotherpartofthetemplateisthetemplateconclusion.

 Fortuple-generatingtemplates,theconclusionisasetoftuplesthatmustalsoexistinthe relations

if the hypothesis tuples are there.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page48

 For constraint-generating templates, the template conclusion is a condition that must hold on

the hypothesis tuples.

 Using constraint generating templates, we are able to define semantic constraints—those

that are beyond the scope of the relational model in terms of its data definition language and

notation.

 Figure 16.5 shows how we may define functional, multivalued, and inclusion

dependencies by templates.

 Figure 16.6 shows how we may specify the constraint that an employee’s salary cannot

be higher than the salary of his or her direct supervisor on the relation schema

EMPLOYEE

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page49

 FunctionalDependenciesBasedonArithmeticFunctionsandProcedures

 Sometimessomeattributes in arelationmayberelated viasomearithmetic functionora more

complicated functional relationship.

 As long as a unique value of Y is associated with every X, we can still consider that the

FD X→Y exists.

 Forexample,intherelation

ORDER_LINE (Order#, Item#, Quantity, Unit_price, Extended_price,

Discounted_price)

 each tuple represents an item from an order with a particular quantity, and the price per

unit for that item.

 Inthisrelation, (Quantity, Unit_price)→Extended_price bytheformula

Extended_price = Unit_price * Quantity.

 Hence, there is a unique value for Extended_price for every pair (Quantity, Unit_price),

and thus it conforms to the definition of functional dependency.

 Moreover, there may be a procedure that takes into account the quantity discounts, the

type of item, and so on and computes a discounted price for the total quantity orderedfor

that item.

 Therefore,wecansay

(Item#, Quantity, Unit_price) → Discounted_price, or

(Item#,Quantity,Extended_price)→Discounted_price.

 Domain-KeyNormalForm

 The idea behind domain-key normal form (DKNF) is to specify the ultimate normalform

that takes into account all possible types of dependencies andconstraints.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page50

 A relation schema is said to be in DKNF if all constraints and dependencies that should

hold on the valid relation states can be enforced simply by enforcing the domain

constraints and key constraints on the relation

 For a relation in DKNF, it becomes very straightforward to enforce all database

constraints by simply checking that each attribute value in a tuple is of the appropriate

domain and that every key constraint is enforced.

 For example, consider a relation CAR(Make, Vin#) (where Vin# is the vehicle

identification number) and another relation MANUFACTURE(Vin#,Country) (where

Country is the country of manufacture).

 A general constraint may be of the following form: If the Make is either ‘Toyota’ or

‘Lexus,’ then the first character of the Vin# is a ‘J’ if the country of manufacture is‘Japan’;

if the Make is ‘Honda’ or ‘Acura,’ the second character of the Vin# is a ‘J’ if the country of

manufacture is ‘Japan.’

 There is nosimplified way torepresentsuchconstraintsshortofwriting aprocedure (or

general assertions) to test them.

 TheprocedureCOMPUTE_TOTAL_PRICEaboveis anexampleofsuchprocedures

needed to enforce an appropriate integrity constraint.

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page51

Problem1

Considerthefollowingrelationforpublishedbooks:

BOOK(BookTitle,AuthorName,BookType,ListPrice,AuthorAffiliation,

Publisher)

Supposethefollowingdependenciesexist:

• BookTitle→BookType,Publisher

• BookType→ListPrice

• AuthorName→AuthorAffiliation

What normal form is the relation in? explain your answer. Apply normalization until you

cannot decomposetherelationsfurther.Statethereasonsbehindeachdecomposition.

Solution:

Therelationisin1NFandnotin2NFasnoattributesarefullyfunctionallydependent on the

key (BookTitle and AuthorName). It is also not in 3NF.

• T

he

notin2NFbecausethepartialDependenciesexist

{BookTitle,AuthorName}→{Publisher,BookType}

{BookdTitle,AuthorName}→AuthorAffiliation

relati

onis

• Thus,theseattributesarenotfullyfunctionally dependent ontheprimarykeyThe2NF

decomposition will eliminate the partial dependencies.

• 2NF decomposition:

• Book1(BookTitle,AuthorName)

• Book2(BookTitle,BookType,ListPrice,Publisher)

• Book3(AuthorName,AuthorAffiliation)

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page52

 Therelationsarenotin3NFbecause:

• BookTitle→BookType→ListPrice

BookTypeisneither akey itselfnorasubsetofakeyandListPriceisnotaprime attribute

 The3NFdecompositionwilleliminatethetransitivedependencyofListprice. 3NF

decomposition:

• Book1(BookTitle,AuthorName)

• Book2A(BookTitle,BookType,Publisher)

• Book2B(BookType,ListPrice)

• Book3(AuthorName,AuthorAffiliation)

Problem2

Considerthefollowingrelation:

CAR_SALE(Car#,DateSold,Salesman#,Commission%,DiscountAmount)

Assume that a car may be sold by multiple salesmen, and hence

{Car#,Salesman#}istheprimarykey.

Additional dependencies are:

Car#→DateSold

Car# → DiscountAmount

DateSold → DiscountAmount

Salesman#→Commission%

Basedonthegivenprimarykey,istherelationin1NF,2NF,3NF? Why or

why not?

Howwouldyousuccessivelynormalizeitcompletely?

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page53

Solution:

 Therelationisin1NFbecauseallattributevaluesaresingleatomicvalues.

 Therelationisnotin2NFbecause:

• Car#→DateSold

• Car#→DiscountAmount

• Salesman#→Commission%

Thus,theseattributesarenotfullyfunctionallydependentontheprimarykey.

 2NF decomposition:

• CAR_SALE1(Car#,DateSold,DiscountAmount)

• CAR_SALE2(Car#,Salesman#)

• CAR_SALE3(Salesman#,Commission%)

 Therelationsarenotin3NFbecause:

• Car#→DateSold→DiscountAmount

DateSoldisneitherakeyitselfnorasubsetofakeyandDiscountAmount is not aprime attribute.

 3NF decomposition:

• CAR_SALES1A(Car#,DateSold)

• CAR_SALES1B(DateSold,DiscountAmount)

• CAR_SALE2(Car#,Salesman#)

• CAR_SALE3(Salesman#,Commission%)

 AssignmentQuestions

1. Considerthefollowingrelationforpublishedbooks:

BOOK(BookTitle,AuthorName,BookType,ListPrice,AuthorAffiliation,Publisher)

Suppose the following dependencies exist:

BookTitle→BookType,Publisher

BookType → ListPrice

AuthorName → AuthorAffiliation

Whatnormalformistherelationin?Explainyouranswer.

2. Considerthefollowingrelation:

CAR_SALE(Car#,DateSold,Salesman#,Commission%,DiscountAmount)

Assume that a car may be sold by multiple salesmen, and hence

{Car#,Salesman#}istheprimarykey.

Additional dependencies are:

Car#→DateSold

DatabaseManagementSystem[18CS53]

Dept.ofCSE,ATMECE,Mysuru Page54

Car# → DiscountAmount

DateSold → DiscountAmount

Salesman#→Commission%

Basedonthegivenprimarykey,istherelationin1NF,2NF,3NF? Why or

why not?

Howwouldyousuccessivelynormalizeitcompletely?

3. LetR={Ssn,Ename, Pnumber, Pname,Plocation,Hours}and0={RI, R2,R3}where RI =

EMP = {Ssn, Ename}

R2 = PRO] = {Pnumber, Pname, Plocation}

R3=WORKS-ON={Ssn,Pnumber,Hours}

ThefollowingfunctionaldependenciesholdonrelationR. F =

{Ssn ->Ename; Pnumber -> {Pname, Plocation};

{Ssn,Pnumber}->Hours}

ProvethattheabovedecompositionofrelationRhasthelosslessjoinproperty.

4. ConsiderR={ABCDEF} FDS{AB->B->EA->DF}

Checkwhetherdecompositionislossless.

5. WhatisasetoffunctionaldependenciesFsaidtobeminimal?Giveanalgorithmfor finding a

minimal cover G for F.

 ExpectedOutcome

 Todesign adatabasewhich willhaveminimum redundancy

 Toapplynormalization tothedesigneddatabase.

 Todecomposethetablesandnormalizethedesignupto4NFand5NFthetablesupto 4NF

and 5NF

 Toapply losslessand lossyjoinoperations

 Toapplyinference rulesanddeduceotherrules fromthegivenset.

 FurtherReading

1. https://www.smartdraw.com/entity-relationship-diagram/

2. https://en.wikipedia.org/wiki/Database_normalization

3. www.databasteknik.se/webbkursen/relalg-lecture

4. https://technet.microsoft.com/en-us/library/bb264565(v=sql.90).aspx

5. pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/.../Ch16_Overview_Xacts.pdf

http://www.smartdraw.com/entity-relationship-diagram/
http://www.smartdraw.com/entity-relationship-diagram/
http://www.databasteknik.se/webbkursen/relalg-lecture

 DatabaseManagementSystem[18CS53]

1
Dept.ofCSE,ATMECE,Mysuru

Module5

Chapter1:TransactionProcessing

 Introduction

 Objectives

 IntroductiontoTransactionProcessing

 Single-UserversusMultiuserSystems

 Transactions,Database Items,ReadandWriteOperations,andDBMSBuffers

 WhyConcurrencyControlIsNeeded

 WhyRecoveryIsNeeded

 TransactionandSystemConcepts

 TransactionStatesandAdditionalOperations

 TheSystemLog

 CommitPointofaTransaction:

 DBMSspecificbufferReplacementpolicies

 DesirablePropertiesofTransactions

 CharacterizingSchedulesBasedon Recoverability

 CharacterizingSchedulesBasedon Serializability

 TestingconflictserializabilityofaSchedule S

 TransactionSupportinSQL

 IntroductiontoConcurrencyControl

 Two-PhaseLockingTechniquesforConcurrencyControl

 TypesofLocksandSystemLockTables

 GuaranteeingSerializabilitybyTwo-PhaseLocking

 VariationsofTwo-PhaseLocking

 DealingwithDeadlockandStarvation

5.11 DeadlockDetection.

 ConcurrencyControlBasedonTimestampOrdering

 Timestamps

 TheTimestamp OrderingAlgorithm

 MultiversionConcurrencyControlTechniques

 MultiversionTechnique BasedonTimestampOrdering

 MultiversionTwo-Phase LockingUsingCertifyLocks

 Validation(Optimistic)ConcurrencyControlTechniques

 GranularityofData ItemsandMultipleGranularityLocking

 GranularityLevelConsiderationsforLocking

 MultipleGranularityLevelLocking

 RecoveryConcepts

 DatabaseManagementSystem[18CS53]

2
Dept.ofCSE,ATMECE,Mysuru

 RecoveryOutlineandCategorizationofRecoveryAlgorithms

 Caching(Buffering)ofDisk Blocks

 Write-AheadLogging,Steal/No-Steal,andForce/No-Force

 CheckpointsintheSystemLogandFuzzyCheckpointing

 TransactionRollback andCascadingRollback

 TransactionActionsThatDoNotAffecttheDatabase

 NO-UNDO/REDORecoveryBasedonDeferred Update

 RecoveryTechniquesBasedon ImmediateUpdate

 ShadowPaging

 TheARIESRecovery Algorithm

 DatabaseBackupandRecoveryfromCatastrophicFailures

 AssignmentQuestions

 ExpectedOutcome

 FurtherReading

 DatabaseManagementSystem[18CS53]

3
Dept.ofCSE,ATMECE,Mysuru

 Introduction

The concept of transaction provides a mechanism for describing logical units of database

processing. Transactionprocessing systems are systems withlarge databases and hundreds of

concurrent users executing database transactions. Examples:

• airlinereservations

• banking

• creditcardprocessing,

• onlineretailpurchasing,

• Stockmarkets,supermarketcheckouts,andmanyotherapplications

These systems require high availability and fast response time for hundreds of concurrentusers.

A transaction is typically implemented by a computer program, which includes database

commands such as retrievals, insertions, deletions, and updates.

 Objectives

 Tostudytransactionproperties

 Tostudy creation ofschedule and maintaining scheduleequivalence.

 Tocheckwhetherthegivenscheduleisserailizableornot.

 Tostudyprotocols usedfor lockingobjects

 Differentiatingbetween 2PLandStrict2PL

 IntroductiontoTransactionProcessing

 Single-UserversusMultiuserSystems

 Onecriterionforclassifyingadatabasesystemisaccordingtothenumberofuserswho can use

the system concurrently

Single-UserversusMultiuserSystems

 ADBMSis

• single-user

- atmostoneuseratatimecanusethesystem

- Eg:PersonalComputerSystem

• multiuser

- manyuserscanusethesystemandhenceaccessthedatabaseconcurrently

- Eg:Airlinereservationdatabase

 DatabaseManagementSystem[18CS53]

4
Dept.ofCSE,ATMECE,Mysuru

 Concurrentaccessis possible becauseof Multiprogramming. Multiprogrammingcan

be achieved by:

• interleavedexecution

• ParallelProcessing

 Multiprogramming operating systems execute some commands from one process,

then suspend that process and execute some commands from the next process, and so

on

 A process is resumed at the point where it was suspended whenever it gets its turn to

use the CPU again

 Hence, concurrent execution of processes is actually interleaved, as illustratedin Figure

21.1

 Figure21.1,showstwoprocesses,AandB,executingconcurrentlyinaninterleaved

fashion

 InterleavingkeepstheCPUbusywhenaprocessrequiresaninputoroutput(I/O)

operation, such as reading a block from disk

 TheCPUisswitchedtoexecuteanotherprocessratherthanremainingidleduringI/O time

 Interleavingalsopreventsalongprocessfromdelayingotherprocesses.

 Ifthecomputersystemhasmultiplehardwareprocessors(CPUs),parallelprocessing

ofmultipleprocessesispossible,asillustratedbyprocessesCandDinFigure21.1

 Mostofthetheoryconcerningconcurrencycontrolindatabasesisdevelopedintermsof

interleavedconcurrency

 In a multiuser DBMS, the stored data items are the primary resources that may be

accessedconcurrentlybyinteractiveusersorapplicationprograms,whichareconstantly

retrieving information from and modifying the database.

 DatabaseManagementSystem[18CS53]

5
Dept.ofCSE,ATMECE,Mysuru

 Transactions,DatabaseItems,ReadandWriteOperations,andDBMS

Buffers

 ATransactionanexecutingprogramthatformsalogicalunitofdatabaseprocessing

 It includes oneor moreDB access operations suchas insertion, deletion,modification or

retrieval operation.

 It can be either embedded within an application program using begin transaction and

end transaction statements Or specified interactively via a high level query language

such as SQL

 Transactionwhichdonotupdatedatabaseareknownasreadonlytransactions.

 Transactionwhichdoupdatedatabaseareknownasreadwritetransactions.

 A database is basically represented as a collection of named data items The size of a

data item is called its granularity.

 A data item can be a database record, but it can also be a larger unit such as a whole

disk block, or even a smaller unit such as an individual field (attribute) value of some

record in the database

 Eachdataitemhasauniquename

 BasicDBaccessoperationsthatatransactioncanincludeare:

• read_item(X):ReadsaDBitemnamedXintoaprogramvariable.

• write_item(X):WritesthevalueofaprogramvariableintotheDBitemnamedX

 Executingread_item(X)includethefollowing steps:

1. FindtheaddressofthediskblockthatcontainsitemX

2. Copytheblockintoabufferinmainmemory

3. CopytheitemXfromthebuffertoprogramvariablenamedX.

 Executingwrite_item(X)includethefollowing steps:

1. FindtheaddressofthediskblockthatcontainsitemX

2. Copythediskblockintoabufferinmainmemory

3. CopyitemXfromprogramvariablenamedXintoitscorrectlocationinbuffer.

4. Storetheupdateddiskblockfrombufferbacktodisk(eitherimmediatelyorlater).

 Decisionofwhentostoreamodifieddiskblockishandledbyrecoverymanagerofthe DBMS

in cooperation with operating system.

 ADBcacheincludesanumberofdatabuffers.

 Whenthebuffersarealloccupiedabufferreplacementpolicyisusedtochooseoneof the

buffers to be replaced. EG: LRU

 DatabaseManagementSystem[18CS53]

6
Dept.ofCSE,ATMECE,Mysuru

 Atransactionincludesread_itemandwrite_itemoperationstoaccessandupdateDB.

 Theread-setofatransactionisthesetofallitemsthatthetransactionreads

 Thewrite-setisthesetofallitemsthatthetransactionwrites

 Forexample,theread-setofT1inFigure21.2is{X,Y}anditswrite-setisalso{X,Y}.

 WhyConcurrencyControlIsNeeded

 Severalproblemscanoccurwhenconcurrenttransactionsexecuteinanuncontrolled

manner

 Example:

• WeconsideranAirlinereservationDB

• EachrecordsisstoredforanairlineflightwhichincludesNumberofreservedseats among

other information.

• Typesofproblemswemayencounter:

1. TheLostUpdateProblem

2. TheTemporaryUpdate(orDirtyRead)Problem

3. TheIncorrectSummaryProblem

4. TheUnrepeatableReadProblem

 DatabaseManagementSystem[18CS53]

7
Dept.ofCSE,ATMECE,Mysuru

 TransactionT1

• transfersNreservationsfromoneflight whosenumberof reservedseatsis storedin the

database item named X to another flight whose number of reserved seats isstored in

the database item named Y.

 TransactionT2

• reservesMseatsonthefirstflight(X)

1. TheLostUpdateProblem

 occurswhentwotransactionsthataccessthesameDBitemshavetheiroperations

interleaved in a way that makes the value of some DB itemincorrect

 SupposethattransactionsT1andT2aresubmittedatapproximatelythesametime,and

suppose that their operations are interleaved as shown in Figure below

 FinalvalueofitemXisincorrect becauseT2readsthevalueof XbeforeT1changesit in the

database, and hence the updated value resulting from T1 is lost.

 Forexample:

X=80atthestart(therewere80reservationsontheflight)

N=5(T1transfers5seatreservationsfromtheflightcorresponding to X to

the flight corresponding to Y)

M=4(T2reserves4seatsonX)

ThefinalresultshouldbeX=79.

 TheinterleavingofoperationsshowninFigureisX=84becausetheupdateinT1that removed

the five seats from X was lost.

 DatabaseManagementSystem[18CS53]

8
Dept.ofCSE,ATMECE,Mysuru

2. TheTemporaryUpdate(orDirtyRead)Problem

 occurswhenonetransactionupdatesadatabaseitem andthenthetransactionfailsfor some

reason

 Meanwhiletheupdateditemisaccessedbyanothertransactionbeforeitischangedback to its

original value

3. TheIncorrectSummaryProblem

• If one transaction is calculating an aggregate summary function on a number of db items

while other transactions are updating some of these items, the aggregate function may

calculate some values before they are updated and others after they areupdated.

 DatabaseManagementSystem[18CS53]

9
Dept.ofCSE,ATMECE,Mysuru

4. TheUnrepeatableReadProblem

 Transaction T reads the same item twice and gets different values on each read, since

the item was modified by another transaction T` between the two reads.

 for example, if during an airline reservation transaction, a customer inquires about seat

availability on several flights

 When the customer decides on a particular flight, the transaction then reads the number

of seats on that flight a second time before completing the reservation, and it may endup

reading a different value for the item.

 WhyRecoveryIsNeeded

 Whenever atransactionis submittedto a DBMSfor execution,thesystemis responsible for

making sure that either

1. All the operations in the transaction are completed successfully and their effect is

recorded permanently in the database or

2. Thetransactiondoesnothaveanyeffectonthedatabaseoranyother transactions

 In the first case, the transaction is said to be committed, whereasin the second case,the

transaction is aborted

 Ifatransactionfailsafterexecutingsomeofitsoperationsbutbeforeexecutingallof them, the

operations already executed must be undone and have no lastingeffect.

Typesoffailures

1. Acomputerfailure(systemcrash):

• Ahardware,software,ornetworkerroroccursinthecomputer systemduring

transaction execution

• Hardwarecrashesareusuallymediafailures—forexample,mainmemoryfailure.

2. Atransactionorsystemerror:

• Someoperationinthetransactionmaycauseittofail,suchasintegeroverflowor division

by zero

• Alsooccurbecauseoferroneousparametervalues

3. Localerrorsorexceptionconditionsdetectedbythetransaction:

• Duringtransactionexecution,certainconditionsmayoccurthatnecessitatecancellation of

the transaction

 DatabaseManagementSystem[18CS53]

10
Dept.ofCSE,ATMECE,Mysuru

• Forexample,dataforthetransactionmaynotbefound

4. Concurrencycontrolenforcement:

• Theconcurrencycontrol maydecidetoabortatransactionbecauseitviolates

serializability or several transactions are in a state ofdeadlock

5. Diskfailure:

• Somediskblocksmaylosetheir databecauseofaread orwrite malfunctionor

because of a disk read/write head crash.

6. Physicalproblemsandcatastrophes:

• referstoanendlesslistofproblemsthatincludespowerorair-conditioningfailure,fire, theft,

overwriting disks or tapes by mistake

 Failuresoftypes1, 2,3,and4aremorecommonthanthoseoftypes5or6.

 Wheneverafailureoftype1through4occurs,thesystemmustkeepsufficient informationto quickly

recover from the failure.

 Diskfailureorothercatastrophicfailuresoftype5or6donothappenfrequently; iftheydo occur,

recovery is a major task.

 TransactionandSystemConcepts

 TransactionStatesandAdditionalOperations

 A transaction is an atomic unit of work that should either be completed in its entirety or

not done at all. For recovery purposes, the system keeps track of start of a transaction,

termination, commit or aborts.

• BEGIN_TRANSACTION:marksthebeginningoftransactionexecution

• READ or WRITE: specify read or write operations on the database items that are

executed as part of a transaction

• END_TRANSACTION: specifies that READ and WRITE transaction operations have

ended and marks the end of transaction execution

• COMMIT_TRANSACTION: signals a successful end of the transaction so that any

changes (updates) executed by the transaction can be safely committed to the

database and will not be undone

• ROLLBACK: signals that the transaction has ended unsuccessfully, so that any

changes or effects that the transaction may have applied to the database must be

undone

 DatabaseManagementSystem[18CS53]

11
Dept.ofCSE,ATMECE,Mysuru

Figure:Statetransitiondiagramillustratingthestatesfortransactionexecution

 A transaction goes into active state immediately after it starts execution and canexecute

read and write operations.

 Whenthetransactionendsitmovestopartiallycommittedstate.

 At this end additional checks are done to see if thetransaction can be committed or not.

If these checks are successful the transaction is said to have reached commit point and

enters committed state. All the changes are recorded permanently in thedb.

 A transaction can go to the failed state if one of the checks fails or if the transaction is

aborted during its active state. The transaction may then have to be rolled back to undo

the effect of its write operation.

 Terminated state corresponds to the transaction leaving the system. All the information

about the transaction is removed from system tables.

 TheSystemLog

 LogorJournalkeepstrackofalltransactionoperationsthataffectthevaluesof

database items

 Thisinformationmaybeneededtopermitrecoveryfromtransactionfailures.

 Thelogiskept ondisk,soitisnot affectedbyanytypeoffailureexceptfordiskor

catastrophic failure

 one(ormore)mainmemorybuffersholdthelastpartofthelogfile, sothat logentries are first

added to the main memory buffer

 Whenthelogbufferisfilled,orwhencertainotherconditionsoccur,thelogbufferis

appendedtotheendofthelogfileondisk.

 DatabaseManagementSystem[18CS53]

12
Dept.ofCSE,ATMECE,Mysuru

 Inaddition,thelogisperiodicallybackeduptoarchivalstorage(tape)to guardagainst such

catastrophic failures

 Thefollowingarethetypesofentries—calledlogrecords—thatarewrittentothelogfile and the

corresponding action for each log record.

 Intheseentries, Treferstoaunique transaction-idthatisgeneratedautomaticallyby the

system for each transaction and that is used to identify eachtransaction:

1. [start_transaction,T].IndicatesthattransactionThasstartedexecution.

2. [write_item,T,X,old_value,new_value].IndicatesthattransactionThaschanged the

value of database item X from old_value to new_value.

3. [read_item,T,X].IndicatesthattransactionThasreadthevalueofdatabaseitemX.

4. [commit,T].IndicatesthattransactionThascompletedsuccessfully,andaffirmsthat its

effect can be committed (recorded permanently) to the database.

5. [abort,T].IndicatesthattransactionThasbeenaborted.

 CommitPointofaTransaction:

 DefinitionaCommitPoint:

– A transaction T reaches its commit point when all its operations that access the

database have been executed successfully and the effect of all the transaction

operations on the database has been recorded in thelog.

– Beyondthecommitpoint, thetransaction is saidto becommitted, anditseffect is

assumed to be permanently recorded in the database.

– Thetransactionthenwritesanentry[commit,T]intothelog.

 RollBackoftransactions:

– Needed for transactions that have a [start_transaction,T] entry into the log but no

commit entry [commit,T] into the log.

 DBMSspecificbufferReplacementpolicies

DomainSeparation(DS)method

• DBMScacheisdividedintoseparatedomains,eachhandlesonetypeofdiskpagesand

replacements within each domain are handled via basic LRU pagereplacement.

• LRUisastaticalgorithmanddoesnotadoptstodynamicallychangingloadsbecause the

number of available buffers for each domain ispredetermined.

• GroupLRUaddsdynamicallyloadbalancingfeaturesinceitgiveseachdomaina priority

and selects pages from lower priority level domain first forreplacement.

 DatabaseManagementSystem[18CS53]

13
Dept.ofCSE,ATMECE,Mysuru

HotSet Method:

 Thisisusefulinqueriesthathavetoscanasetofpagesrepeatedly.

 The hot set method determines for each db processing algorithm the set of disk pages

that will be accessed repeatedly and it does not replace them until their processing is

completed.

TheDBMINmethod:

 uses a model known as QLSM (Query Locality set model), which predetermines the

pattern of page references for each algorithm for a particular dboperation

 Depending on the type of access method, the file characteristics, and the algorithm

used the QLSM will estimate the number of main memory buffers needed for each file

involved in the operation.

 DesirablePropertiesofTransactions

 Transactionsshouldpossessseveralproperties,oftencalledtheACIDproperties

AAtomicity:atransactionisanatomicunitofprocessinganditiseitherperformed entirely or

not at all.

C ConsistencyPreservation:atransactionshouldbeconsistencypreservingthatisit must

take the database from one consistent state to another.

IIsolation/Independence: Atransactionshouldappearasthoughitisbeingexecuted in

isolation from other transactions, even though many transactions are executed

concurrently.

DDurability(orPermanency):ifatransactionchangesthedatabaseandiscommitted, the

changes must never be lost because of any failure.

 The atomicity property requires that we execute a transaction to completion. It is the

responsibility of the transaction recovery subsystem of a DBMS to ensureatomicity.

 The preservation of consistency is generally considered to be the responsibility of the

programmers who write the database programs or of the DBMS module that enforces

integrity constraints.

 The isolation property is enforced by the concurrency control subsystem of the DBMS.If

every transaction does not make its updates (write operations) visible to other

transactions until it is committed, one form of isolation is enforced that solves the

temporary update problem and eliminates cascading rollbacks

 Durabilityistheresponsibilityofrecovery subsystem.

 DatabaseManagementSystem[18CS53]

14
Dept.ofCSE,ATMECE,Mysuru

 CharacterizingSchedulesBasedonRecoverability

 schedule(orhistory):theorderofexecutionofoperationsfromallthevarious

transactions

 Schedules(Histories)ofTransactions: AscheduleSofntransactionsT1,T2,…….Tnis a

sequential ordering of the operations of the n transactions.

– Thetransactionsareinterleaved

 Twooperationsinaschedulearesaidtoconflictiftheysatisfyallthreeofthefollowing

conditions:

(1) theybelongtodifferenttransactions;

(2) theyaccessthesameitemX;and

(3) atleastoneoftheoperationsisawrite_item(X)

 Conflictingoperations:

• r1(X)conflictswithw2(X) Readwriteconflict

• r2(X)conflictswithw1(X)

• w1(X)conflictswithw2(X) Writeconflict

• r1(X)donotconflictswithr2(X)

Schedulesclassifiedonrecoverability:

 Recoverableschedule:

– Onewherenotransactionneedstoberolledback.

– AscheduleSisrecoverableifnotransactionTinScommitsuntilalltransactions T’ that

have written an item that T reads have committed.

– Example:

• Sc:r1(X);w1(X);r2(X);r1(Y);w2(X);c2;a1;

• Sd:r1(X);w1(X);r2(X);r1(Y);w2(X);w1(Y);c1;c2;

 Cascadelessschedule:

– Onewhereeverytransactionreadsonlytheitemsthatarewrittenbycommitted

transactions.

 Schedulesrequiringcascadedrollback:

– Ascheduleinwhichuncommittedtransactionsthatreadanitemfromafailed

transaction must be rolled back.

 StrictSchedules:

– AscheduleinwhichatransactioncanneitherreadorwriteanitemXuntilthe last

transaction that wrote X has committed.

 DatabaseManagementSystem[18CS53]

15
Dept.ofCSE,ATMECE,Mysuru

 CharacterizingSchedulesBasedonSerializability

 schedules that are always considered to be correct when concurrent transactions are

executing are known as serializable schedules

 Suppose that two users—for example, two airline reservations agents—submit to the

DBMS transactions T1 and T2 at approximately the same time. If no interleaving of

operations is permitted, there are only two possible outcomes:

1. Execute alltheoperations oftransaction T1(in sequence)followedby allthe

operations of transaction T2 (in sequence).

2. ExecutealltheoperationsoftransactionT2(insequence)followedbyallthe

operations of transaction T1 (in sequence).

 DatabaseManagementSystem[18CS53]

16
Dept.ofCSE,ATMECE,Mysuru

 Serialschedule:

– AscheduleSisserialif,foreverytransactionTparticipatingintheschedule,all the

operations of T are executed consecutively in theschedule.

• Otherwise,thescheduleiscallednonserialschedule.

 Serializableschedule:

– AscheduleSisserializableifitisequivalenttosomeserialscheduleofthesame n

transactions.

 Resultequivalent:

– Twoschedulesarecalledresultequivalent iftheyproducethesamefinalstateof the

database.

 Conflictequivalent:

– Twoschedulesaresaidtobeconflictequivalentiftheorderofanytwoconflicting

operations is the same in both schedules.

 Conflictserializable:

– AscheduleSissaidtobeconflictserializable ifitisconflictequivalenttosome serial

schedule S’.

 Beingserializableisnotthesameasbeingserial

 Beingserializableimpliesthatthescheduleisacorrectschedule.

– Itwillleavethedatabaseinaconsistentstate.

– The interleaving is appropriate and will result in a state as if the transactions

wereseriallyexecuted,yetwillachieveefficiencyduetoconcurrentexecution.

 TestingconflictserializabilityofaScheduleS

ForeachtransactionTiparticipatinginscheduleS,createanodelabeledTiinthe precedence

graph.

ForeachcaseinSwhereTjexecutesaread_item(X)afterTiexecutesawrite_item(X), create an

edge (TiTj) in the precedence graph.

ForeachcaseinSwhereTjexecutesawrite_item(X)afterTiexecutesaread_item(X)

,createanedge(TiTj)intheprecedencegraph.

ForeachcaseinSwhereTjexecutesawrite_item(X)afterTiexecutesawrite_item(X), create an

edge (TiTj) in the precedence graph.

ThescheduleSisserializableifandonlyiftheprecedencegraphhasnocycles.

 DatabaseManagementSystem[18CS53]

17
Dept.ofCSE,ATMECE,Mysuru

Fig:Constructingtheprecedencegraphsforschedules AandDfromfig21.5totestforconflict

serializability.

(a) PrecedencegraphforserialscheduleA.

(b) PrecedencegraphforserialscheduleB.

(c) PrecedencegraphforscheduleC(notserializable).

(d) PrecedencegraphforscheduleD(serializable,equivalenttoscheduleA).

 Anotherexampleofserializabilitytesting.(a)TheREADandWRITEoperationsofthree

transactions T1, T2, and T3.

 DatabaseManagementSystem[18CS53]

18
Dept.ofCSE,ATMECE,Mysuru

 DatabaseManagementSystem[18CS53]

19
Dept.ofCSE,ATMECE,Mysuru

 PrecedencegraphforscheduleE

 PrecedencegraphforscheduleF

 TransactionSupportinSQL

 ThebasicdefinitionofanSQLtransactionis,it isalogicalunit ofworkandisguaranteed to be

atomic

 AsingleSQLstatementisalwaysconsideredtobeatomic—eitheritcompletes

execution without an error or it fails and leaves the databaseunchanged

 WithSQL,thereisnoexplicitBegin_Transactionstatement.Transactioninitiationis done

implicitly when particular SQL statements are encountered

 Everytransactionmusthaveanexplicitendstatement,whichiseitheraCOMMITora

ROLLBACK

 EverytransactionhascertaincharacteristicsattributedtoitandarespecifiedbyaSET

TRANSACTION statement in SQL

 DatabaseManagementSystem[18CS53]

20
Dept.ofCSE,ATMECE,Mysuru

 Thecharacteristicsare:

• Theaccessmode

- canbespecifiedasREADONLYorREADWRITE

- ThedefaultisREADWRITE

- AmodeofREADWRITEallowsselect,update,insert,delete,andcreate

commands to be executed

- AmodeofREADONLY,asthenameimplies,issimplyfordataretrieval.

• Thediagnosticareasize

- DIAGNOSTICSIZEn,specifiesanintegervaluen, whichindicatesthe

number of conditions that can be held simultaneously in the

diagnosticarea

- Theseconditionssupplyfeedbackinformation(errorsorexceptions)tothe user

or program on the n most recently executed SQLstatement

• Theisolationlevel

- specifiedusingthestatementISOLATIONLEVEL<isolation>,wherethevaluefor

<isolation>canbeREADUNCOMMITTED,READCOMMITTED,REPEATABLE READ,

or SERIALIZABLE

- ThedefaultisolationlevelisSERIALIZABLE

- TheuseofthetermSERIALIZABLEhereis basedonnotallowingviolationsthat cause

dirty read, unrepeatable read, and phantoms

- IfatransactionexecutesatalowerisolationlevelthanSERIALIZABLE,thenone or

more of the following three violations may occur:

1. Dirtyread. AtransactionT1mayreadtheupdateofatransaction T2,which has

not yet committed. IfT2 fails andis aborted, then T1 would havereada value

that does not exist and is incorrect.

2. Nonrepeatableread. AtransactionT1mayreada givenvaluefromatable.If

anothertransactionT2laterupdatesthatvalueandT1readsthatvalueagain, T1 will

see a different value.

3. Phantoms. A transaction T1 may read a set of rows from a table, perhaps

basedonsomeconditionspecifiedintheSQLWHERE-clause.Nowsuppose that a

transaction T2inserts a newrowthat also satisfies the WHERE-clause

condition used in T1, into the table used by T1. IfT1 is repeated, then T1will

see a phantom, a row that previously did notexist.

 DatabaseManagementSystem[18CS53]

21
Dept.ofCSE,ATMECE,Mysuru

 ThetransactionconsistsoffirstinsertinganewrowintheEMPLOYEEtableandthen

updating the salary of all employees who work in department 2

 IfanerroroccursonanyoftheSQLstatements,theentiretransactionisrolledback

 Thisimpliesthatanyupdatedsalary(bythistransaction)wouldberestoredto its

previous value and that the newly inserted row would be removed.

 DatabaseManagementSystem[18CS53]

22
Dept.ofCSE,ATMECE,Mysuru

Chapter2:ConcurrencyControlinDatabases

 IntroductiontoConcurrencyControl

• PurposeofConcurrencyControl

– ToenforceIsolation(throughmutualexclusion)amongconflictingtransactions.

– Topreservedatabaseconsistencythroughconsistencypreserving executionof

transactions.

– Toresolveread-writeandwrite-writeconflicts.

• Example:

– In concurrent execution environmentif T1 conflicts with T2 over a data item A, thenthe

existing concurrency control decides if T1 or T2 should get the A and if the other

transaction is rolled-back or waits.

 Two-PhaseLockingTechniquesforConcurrencyControl

 Theconceptoflockingdataitemsisoneofthemaintechniquesusedforcontrollingthe

concurrent execution of transactions.

 Alockisavariableassociatedwithadataitem inthedatabase.Generallythereisalock for each

data item in the database.

 Alockdescribesthestatusofthedataitemwithrespecttopossibleoperationsthatcanbe applied

to that item.

 Itisusedforsynchronizingtheaccessbyconcurrenttransactionstothedatabaseitems.

 Atransactionlocksanobjectbeforeusing it

 Whenanobjectislockedbyanothertransaction,therequestingtransactionmustwait

 TypesofLocksandSystemLockTables

1. BinaryLocks

 Abinarylock canhavetwostatesorvalues:lockedandunlocked(or1 and

0).

 IfthevalueofthelockonXis1,itemXcannotbeaccessedbyadatabase operation

that requests the item

 DatabaseManagementSystem[18CS53]

23
Dept.ofCSE,ATMECE,Mysuru

 IfthevalueofthelockonXis0,theitem canbeaccessedwhen

requested, and the lock value is changed to 1

 We refertothecurrentvalue(orstate)ofthelockassociatedwithitemX as

lock(X).

 Twooperations,lock_itemandunlock_item,areusedwithbinary

locking.

 Atransactionrequestsaccesstoanitem Xbyfirstissuingalock_item(X)

operation

 IfLOCK(X)=1,thetransactionisforcedtowait.

 IfLOCK(X)=0,itissetto1(thetransactionlockstheitem)andthe

transaction is allowed to access item X

 When the transaction is through using the item, it issues an

unlock_item(X)operation,whichsetsLOCK(X)backto0(unlocksthe

item) so that X may be accessed by other transactions

 Hence,abinarylockenforcesmutualexclusiononthedataitem.

Fig:2.1.1Lockandunlockoperationsforbinarylicks.

lock_item(X):

B:ifLOCK(X)=0(*itemisunlocked*) then

LOCK(X) ←1 (* lock the item *) else

begin

wait(untilLOCK(X)=0

andthelockmanagerwakesupthetransaction); go to

B

end;

unlock_item(X):

LOCK(X)←0;(*unlocktheitem*) if

any transactions are waiting

thenwakeuponeofthewaitingtransactions;

 DatabaseManagementSystem[18CS53]

24
Dept.ofCSE,ATMECE,Mysuru

 The lock_item and unlock_item operations must be implemented as indivisible units that

is, no interleaving should be allowed once a lock or unlock operation is started until the

operation terminates or the transaction waits

 The wait command within the lock_item(X) operation is usually implemented by putting

the transaction in a waiting queue for item X until X is unlocked and the transaction can

be granted access to it

 Other transactions that also want to access X are placed in the same queue.Hence, the

wait command is considered to be outside the lock_item operation.

 It is quite simple to implement a binary lock; all that is needed is a binary-valuedvariable,

LOCK, associated with each data item X in thedatabase

 In its simplest form, each lock can be a record with three fields: <Data_item_name,

LOCK, Locking_transaction> plus aqueuefortransactionsthatarewaitingto accessthe item

 If thesimple binary locking scheme described here is used, every transaction must obey

the following rules:

1. A transaction T must issue the operation lock_item(X) before any

read_item(X) or write_item(X) operations are performed in T.

2. A transaction T must issue the operation

unlock_item(X) after allread_item(X) and write_item(X) operations are

completed in T.

3. AtransactionTwillnotissuealock_item(X)operationifitalreadyholdsthelock on item

X.

4. AtransactionTwillnotissueanunlock_item(X)operationunlessitalreadyholds the

lock on item X.

2. Shared/Exclusive(orRead/Write)Locks

 binarylockingschemeistoorestrictivefordatabaseitemsbecauseatmost,one

transaction can hold a lock on a given item

 shouldallowseveraltransactionstoaccessthesameitemX iftheyallaccessXfor reading

purposes only

 ifatransactionistowriteanitemX,itmusthaveexclusiveaccesstoX

 Forthispurpose,adifferenttypeoflockcalledamultiple-modelockisused

 Inthisscheme—calledshared/exclusiveorread/writelocks—therearethreelocking

operations: read_lock(X), write_lock(X), and unlock(X).

 DatabaseManagementSystem[18CS53]

25
Dept.ofCSE,ATMECE,Mysuru

 A read-locked item is also called share-locked because other transactions are allowed

to read the item, whereas a write-locked item is called exclusive-locked because a

single transaction exclusively holds the lock on the item

 Methodtoimplementread/writelockisto

- keeptrackofthenumberoftransactions that hold a shared(read)lock on

an item in the lock table

- Eachrecordinthelocktablewillhavefourfields:

<Data_item_name,LOCK,No_of_reads,Locking_transaction(s)>.

 IfLOCK(X)=write-locked,thevalueoflocking_transaction(s)isasingletransactionthat holds

the exclusive (write) lock on X

 IfLOCK(X)=read-locked,thevalueof lockingtransaction(s)isalistofoneormore

transactions that hold the shared (read) lock on X.

 DatabaseManagementSystem[18CS53]

26
Dept.ofCSE,ATMECE,Mysuru

 Whenweusetheshared/exclusivelockingscheme,thesystemmustenforcethefollowing rules:

1. AtransactionTmustissuetheoperationread_lock(X)orwrite_lock(X)beforeany

read_item(X) operation is performed in T.

2. AtransactionTmustissuetheoperationwrite_lock(X)beforeanywrite_item(X)

operation is performed in T.

3AtransactionTmustissuetheoperationunlock(X)afterallread_item(X)and write_item(X)

operations are completed in T.3

4. AtransactionTwillnot issuearead_lock(X)operationifitalreadyholdsaread(shared) lock or

a write (exclusive) lock on item X.

ConversionofLocks

 AtransactionthatalreadyholdsalockonitemXisallowedundercertainconditionsto

convertthelockfromonelockedstatetoanother

 Forexample,itispossibleforatransaction Ttoissuearead_lock(X)andthenlaterto

upgradethelockbyissuingawrite_lock(X)operation

-IfTistheonlytransactionholdingareadlockon Xatthetimeit issues the

write_lock(X) operation, the lock can be upgraded;otherwise, the

transaction must wait

 GuaranteeingSerializabilitybyTwo-PhaseLocking

 DatabaseManagementSystem[18CS53]

27
Dept.ofCSE,ATMECE,Mysuru

 Atransactionissaidtofollowthetwo-phaselockingprotocolifalllockingoperations

(read_lock, write_lock) precede the first unlock operation in thetransaction

 Suchatransactioncanbedividedintotwophases:

 Expandingorgrowing(first)phase,duringwhichnewlocksonitemscanbe

acquired but none can be released

 Shrinking(second)phase,duringwhichexistinglockscanbereleasedbutno new

locks can be acquired

 If lock conversion is allowed, then upgrading of locks (from read-locked to write-locked)

mustbedoneduringtheexpanding phase, anddowngrading oflocks(from write-locked to

read-locked) must be done in the shrinking phase.

 Transactions T1 and T2 in Figure 22.3(a) do not follow the two-phase locking protocol

because the write_lock(X) operation follows the unlock(Y) operation in T1, and similarly

the write_lock(Y) operation follows the unlock(X) operation inT2.

Figure 21.3 Transactions that do not

obey two-phase locking (a) Two

transactions T1 and T2 (b) Results of

possible serial schedules of T1 and T2

(c) A nonserializable schedule S that

uses locks

 DatabaseManagementSystem[18CS53]

28
Dept.ofCSE,ATMECE,Mysuru

 If we enforce two-phase locking, the transactions can be rewritten as T1’ and T2’ as shown

in Figure 22.4.

 Now, the schedule shown in Figure 22.3(c) is not permitted for T1_ and T2_ (with their

modified order of locking and unlocking operations) under the rules of locking because T1_

will issue its write_lock(X) before it unlocks item Y; consequently, when T2_ issues its

read_lock(X), it is forced to wait until T1_ releases the lock by issuing an unlock (X) in the

schedule.

 Ifeverytransactioninaschedulefollowsthetwo-phaselockingprotocol,schedule

guaranteed to be serializable

 Two-phaselockingmaylimittheamountofconcurrencythatcanoccurinaschedule

 Someserializablescheduleswillbeprohibitedbytwo-phaselockingprotocol

 VariationsofTwo-PhaseLocking

 Basic2PL

– Techniquedescribedpreviously

 Conservative(static)2PL

– Requiresatransactiontolockalltheitemsitaccessesbeforethetransaction begins

execution by predeclaring read-set and write-set

– ItsDeadlock-freeprotocol

 DatabaseManagementSystem[18CS53]

29
Dept.ofCSE,ATMECE,Mysuru

 Strict2PL

– guaranteesstrictschedules

– Transactiondoesnotreleaseexclusivelocksuntilafteritcommitsoraborts

– noothertransactioncanreadorwriteanitemthatiswrittenbyTunlessThas

committed, leading to a strict schedule forrecoverability

– Strict2PLisnotdeadlock-free

 Rigorous2PL

– guaranteesstrictschedules

– Transactiondoesnotreleaseanylocksuntilafteritcommitsoraborts

– easiertoimplementthanstrict2PL

 DealingwithDeadlockandStarvation

 Deadlock occurs when each transaction T in a set of two or more transactions is

waiting for some item that is locked by some other transaction T’ in theset.

 Hence, each transaction in the set is in a waiting queue, waiting for one of the other

transactions in the set to release the lock on an item.

 Butbecausetheothertransactionisalsowaiting,itwillneverreleasethelock.

 A simple example is shown in Figure 22.5(a), where the two transactions T1’ and

T2_’are deadlocked in a partial schedule; T1’ is in the waiting queue for X, which is

locked by T2’, while T2’ is inthe waiting queue for Y, which is locked by T1’. Meanwhile,

neither T1’ nor T2’ nor any other transaction can access items X andY

Figure22.5Illustratingthedeadlockproblem(a)ApartialscheduleofT1′andT2′thatisina state of

deadlock (b) A wait-for graph for the partial schedule in (a)

 DatabaseManagementSystem[18CS53]

30
Dept.ofCSE,ATMECE,Mysuru

Deadlockpreventionprotocols

 Onewaytopreventdeadlockistouseadeadlockpreventionprotocol

 One deadlock prevention protocol, which is used in conservative two-phase locking,

requires that every transaction lock all the items it needs in advance. If any of the items

cannot be obtained, none of the items are locked. Rather, the transaction waits and then

tries again to lock all the items it needs.

 A second protocol, which also limits concurrency, involves ordering all the items in the

database and making sure that a transaction that needs several items will lock them

according to that order. This requires that the programmer (or the system) is aware ofthe

chosen order of the items

 Bothapproachesimpractical

 SomeofthesetechniquesusetheconceptoftransactiontimestampTS(T),whichisa unique

identifier assigned to each transaction

 Thetimestampsaretypicallybasedontheorderinwhichtransactionsarestarted;hence,if

transaction T1 starts before transaction T2, then TS(T1) <TS(T2).

 Theoldertransaction(whichstartsfirst)hasthesmallertimestampvalue.

 Protocolsbasedonatimestamp

• Wait-die

• Wound-wait

 Suppose that transaction Ti tries to lock an item X but is not able to because X is locked

by some other transaction Tj with a conflicting lock. The rules followed by theseschemes

are:

■ Wait-die. If TS(Ti) < TS(Tj), then (Ti older than Tj) Ti is allowed to wait; otherwise (Ti

younger than Tj) abort Ti (Ti dies) and restart it later with the same timestamp.

■ Wound-wait. If TS(Ti) < TS(Tj), then (Ti older than Tj) abort Tj (Ti wounds Tj) and

restart it later with the same timestamp; otherwise (Ti younger than Tj) Ti is allowed to

wait.

 In wait-die, an older transaction is allowed to wait for a younger transaction, whereas a

younger transaction requesting an item held by an older transaction is aborted and

restarted.

 The wound-wait approach does the opposite: A younger transaction is allowed to wait

for an older one, whereas an older transaction requesting an item held by a younger

transaction preempts the younger transaction by aborting it.

 DatabaseManagementSystem[18CS53]

31
Dept.ofCSE,ATMECE,Mysuru

 Bothschemesendupabortingtheyoungerofthetwotransactions(thetransactionthat started

later) that may be involved in a deadlock, assuming that this will waste less processing.

 Itcanbeshownthatthesetwotechniquesaredeadlock-free,sinceinwait-die,

transactions only wait for younger transactions so no cycle iscreated.

 Similarly,inwound-wait,transactionsonlywaitforoldertransactionssonocycleis

created.

 Anothergroupofprotocolsthatpreventdeadlockdonotrequiretimestamps.These

include the

• nowaiting(NW)and

• cautiouswaiting(CW)algorithms

 Nowaitingalgorithm,

– if a transaction is unable to obtain a lock, it is immediately aborted and then

restarted after a certain time delay without checking whether a deadlock will

actually occur or not.

– notransactioneverwaits,sonodeadlockwill occur

– thisschemecancausetransactionstoabortandrestartneedlessly

 cautiouswaiting

– trytoreducethenumberofneedlessaborts/restarts

– SupposethattransactionTitriestolockanitemXbutisnot abletodosobecause

XislockedbysomeothertransactionTjwithaconflictinglock.

– Thecautiouswaitingrulesareasfollows:

 IfTjisnotblocked(notwaitingforsomeotherlockeditem),then Tiis

blocked and allowed to wait; otherwise abort Ti.

– Itcanbeshownthatcautiouswaitingisdeadlock-free,becausenotransactionwill ever

wait for another blocked transaction.

 DeadlockDetection.

 A second, more practical approach to dealing with deadlock is deadlock detection,

where the system checks if a state of deadlock actually exists.

 This solution is attractive if we know there will be little interference among the

transactions—that is, if different transactions will rarely access the same items at the

same time.

 DatabaseManagementSystem[18CS53]

32
Dept.ofCSE,ATMECE,Mysuru

 This can happen if the transactions are short and each transaction locks only a few

items, or if the transaction load is light.

 On the other hand, if transactions are long and each transaction uses many items, or if

the transaction load is quite heavy, it may be advantageous to use a deadlockprevention

scheme.

 Asimplewaytodetectastateofdeadlockis forthesystemtoconstructandmaintaina

wait-forgraph.

 Onenodeiscreatedinthewait-forgraphforeachtransactionthatiscurrentlyexecuting.

 Whenever a transaction Ti is waiting to lock an item X that is currently locked by a

transaction Tj, a directed edge (Ti → Tj) is created in the wait-forgraph.

 When Tj releases the lock(s) on the items that Ti was waiting for, the directed edge is

dropped from the wait-for graph.We have a state of deadlock if and only if the wait-for

graph has a cycle.

 One problem with this approach is the matter of determining when the system should

check for a deadlock.

 One possibility is to check for a cycle every time an edge is added to the wait-for graph,

but this may cause excessive overhead.

 Criteria such as the number of currently executing transactions or the period of time

several transactions have been waiting to lock itemsmay be used instead to check for a

cycle. Figure 22.5(b) shows the wait-for graph for the (partial) schedule shown in Figure

22.5(a).

– If the system is in a state of deadlock, some of the transactions causing the deadlock

must be aborted.

– Choosingwhichtransactionstoabortisknownasvictimselection.

– The algorithmfor victimselection should generally avoid selecting transactions thathave

been running for a long time and that have performed many updates, and it should try

instead to select transactions that have not made many changes (youngertransactions).

 Timeouts

• Anothersimpleschemetodealwithdeadlockistheuseoftimeouts.

• Thismethodispracticalbecauseofitslowoverheadandsimplicity.

• In this method, if a transaction waits for a period longer than a system-defined

timeout period, the system assumes that the transaction may be deadlocked and

aborts it—regardless of whether a deadlock actually exists or not.

 DatabaseManagementSystem[18CS53]

33
Dept.ofCSE,ATMECE,Mysuru

 Starvation.

– Another problem that may occur when we use locking is starvation, which occurs

when a transaction cannot proceed for an indefinite period of time while other

transactions in the system continue normally.

– This may occur if the waiting scheme for locked items is unfair, giving priority to

some transactions over others

– One solution for starvation is to have a fair waiting scheme, suchas using a first-

come-first-servedqueue;transactionsareenabledtolockanitemintheorder in which

they originally requested the lock.

– Another scheme allows some transactions to have priority over others but

increases the priority of a transaction the longer it waits, until it eventually gets the

highest priority and proceeds.

– Starvation can also occur because of victim selection if the algorithm selects the

same transaction as victim repeatedly, thus causing it to abort and never finish

execution.

– The algorithm can use higher priorities for transactions that have been aborted

multiple times to avoid this problem.

 ConcurrencyControlBasedonTimestampOrdering

guaranteesserializabilityusingtransactiontimestampstoordertransactionexecution for

an equivalent serial schedule

 Timestamps

 timestampisauniqueidentifiercreatedbytheDBMStoidentifyatransaction.

 Typically, timestamp values are assigned in the order in which the transactions are

submitted to the system, so a timestamp can be thought of as the transaction start

time.

 WewillrefertothetimestampoftransactionTasTS(T).

 Concurrency control techniques based on timestamp ordering do not use

locks;hence, deadlocks cannot occur.

 Timestampscanbegeneratedinseveralways.

– One possibility is to use a counter that is incremented each time its value is

assigned to a transaction. The transaction timestamps are numbered 1, 2, 3,

 DatabaseManagementSystem[18CS53]

34
Dept.ofCSE,ATMECE,Mysuru

... in this scheme. A computer counter has a finite maximum value, so the

system must periodically reset the counter to zero when no transactions are

executing for some short period of time.

– Another wayto implement timestamps isto use thecurrent date/timevalue of

the system clock and ensure that no two timestamp values are generated

during the same tick of the clock.

 TheTimestampOrdering Algorithm

 The idea for this scheme is to order the transactions based on their

timestamps.

 A schedule in which the transactions participate is then serializable, and the

onlyequivalentserialschedulepermittedhasthetransactionsinorderoftheir

timestamp values. This is called timestamp ordering (TO).

 The algorithm must ensure that, for each item accessed by conflicting

Operations in the schedule, the order in which the item is accessed does not

violate the timestamp order.

 To do this, the algorithm associates with each database item X two timestamp

(TS) values:

1. read_TS(X). The read timestamp of item X is the largest timestamp

among all the timestamps of transactions that have successfullyread

item X—that is, read_TS(X) = TS(T), where T is the youngest

transaction that has read X successfully.

2. write_TS(X). The write timestamp of item X is the largest of all the

timestamps of transactions that have successfully written item X—

that is, write_TS(X) = TS(T), where T is the youngest transactionthat

has written X successfully.

BasicTimestampOrdering(TO).

 Whenever some transaction T tries to issue a read_item(X) or a write_item(X) operation,

the basic TO algorithm compares the timestamp of T with read_TS(X) and write_TS(X) to

ensure that the timestamp order of transaction execution is not violated.

 If this order is violated, then transaction T is aborted and resubmitted to the system as a

new transaction with a new timestamp.

 IfTisabortedandrolledback,any transactionT1 thatmay haveusedavaluewrittenbyT

mustalsoberolledback.

 DatabaseManagementSystem[18CS53]

35
Dept.ofCSE,ATMECE,Mysuru

 Similarly, any transaction T2 that may have used a value written by T1 must also be rolled

back, and so on. This effect is known as cascading rollback and is one of the problems

associated with basic TO, since the schedules produced are not guaranteed to be

recoverable.

 An additional protocol must be enforced to ensure that the schedules are recoverable,

cascadeless, or strict.

 ThebasicTOalgorithm:

 The concurrencycontrolalgorithmmust checkwhether conflicting operations violate

the timestamp ordering in the following two cases:

1. Whenever a transaction T issues a write_item(X) operation, the following ischecked:

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T and

reject the operation. This should be done because some younger transactionwith

a timestamp greater than TS(T)—and hence after T in the timestamp ordering—

has already read or written the value of item X before T had a chance to write X,

thus violating the timestamp ordering.

b. If the condition in part (a) does not occur, then execute the write_item(X)operation

of T and set write_TS(X) to TS(T).

2. WheneveratransactionTissuesaread_item(X)operation,thefollowingischecked:

a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation. This

should be done because some younger transaction with timestamp greater than

TS(T)—and hence after T in the timestamp ordering—has already written the

value of item X before T had a chance to read X.

b. If write_TS(X) ≤ TS(T), then execute the read_item(X) operation of T and set

read_TS(X) to the larger of TS(T) and the current read_TS(X).

 Whenever the basic TO algorithm detects two conflicting operations that occur in

the incorrect order, it rejects the later of the two operations by aborting the

transaction that issued it. The schedules produced by basic TO are hence

guaranteed to be conflict serializable

StrictTimestampOrdering(TO)

 AvariationofbasicTOcalledstrictTOensuresthattheschedulesarebothstrict

(foreasyrecoverability)and(conflict)serializable.

 DatabaseManagementSystem[18CS53]

36
Dept.ofCSE,ATMECE,Mysuru

 In this variation, a transaction T that issues a read_item(X) or write_item(X) such

that TS(T) > write_TS(X) has itsread or write operation delayed untilthe transaction

T’ that wrote the value of X (hence TS(T’) = write_TS(X)) has committed oraborted.

 Toimplementthisalgorithm,it isnecessarytosimulatethelockingofanitem Xthat has

been written by transaction T’ until T’ is either committed or aborted. This

algorithm does not cause deadlock, since T waits for T’ only if TS(T) >TS(T_).

Thomas’sWriteRule

 A modification of the basic TO algorithm, known as Thomas’s write rule, does not

enforce conflict serializability, but it rejects fewer write operations by modifying the

checks for the write_item(X) operation asfollows:

1. Ifread_TS(X)>TS(T),thenabortandrollbackTandrejecttheoperation.

2. Ifwrite_TS(X) > TS(T), then do not execute the write operation but continue

processing. This is because some transaction with timestamp greater than TS(T)—

and hence after T in the timestamp ordering—has already written the value of X.

Thus,wemustignorethewrite_item(X)operationofTbecauseitisalreadyoutdated

andobsolete.Noticethatanyconflictarisingfromthissituationwouldbedetectedby case

(1).

Ifneithertheconditioninpart(1)northeconditioninpart(2)occurs,thenexecute the

write_item(X) operation of T and set write_TS(X) to TS(T).

 MultiversionConcurrencyControlTechniques

 Other protocols for concurrency control keep the old values of a data item when theitem

is updated. These are known as multiversion concurrency control, because several

versions (values) of an item aremaintained

 When a transaction requires access to an item, an appropriate version is chosen to

maintain the serializability of the currently executing schedule, if possible.

 The idea is that some read operations that would be rejected in other techniques can

still be accepted by reading an older version of the item to maintain serializability.When

a transaction writes an item, it writes a new version and the old version(s) of the item

are retained

 An obvious drawback ofmultiversion techniques is that more storage is needed to maintain

multiple versions of the database items

 DatabaseManagementSystem[18CS53]

37
Dept.ofCSE,ATMECE,Mysuru

 MultiversionTechniqueBasedonTimestampOrdering

 Inthismethod,severalversionsX1,X2,...,Xkofeachdataitem Xaremaintained.

 Foreachversion,thevalueofversionXiandthefollowingtwotimestampsarekept:

1. read_TS(Xi).ThereadtimestampofXiisthelargestofallthetimestampsof

transactions that have successfully read version Xi.

2. write_TS(Xi).ThewritetimestampofXiisthetimestampofthetransaction that

wrote the value of version Xi.

 WheneveratransactionTisallowedtoexecuteawrite_item(X)operation,anew

version Xk+1 of item X is created, with both the write_TS(Xk+1) and the

read_TS(Xk+1) set to TS(T)

 Correspondingly,whenatransactionTisallowedtoreadthevalueofversion Xi,the value

of read_TS(Xi) is set to the larger of the current read_TS(Xi) andTS(T).

 Toensureserializability,thefollowingrulesareused:

1. If transaction T issues a write_item(X) operation, and version i of X has the

highest write_TS(Xi) of all versions of X that is also less than or equal to TS(T),

and read_TS(Xi) > TS(T), then abort and roll back transaction T; otherwise,

create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).

2. If transaction T issues a read_item(X) operation, find the version i of X that has

the highest write_TS(Xi) of all versions of X that is also less than or equal to

TS(T); thenreturnthe value of Xitotransaction T, and set thevalue ofread_TS(Xi)

to the larger of TS(T) and the current read_TS(Xi).

 MultiversionTwo-PhaseLockingUsingCertifyLocks

 Inthismultiple-modelockingscheme,therearethreelockingmodesforanitem: read,

write, and certify

 Hence,thestateofLOCK(X)foranitemXcanbeoneofread-locked,writelocked, certify-

locked, or unlocked

 We candescribetherelationshipbetweenreadandwritelocksinthestandard

scheme by means of the lock compatibility table shown in Figure 22.6(a)

 An entry of Yes means that if a transaction T holds the type of lock specified in the

column header on item X and if transaction T_ requests the type of lock specified in

 DatabaseManagementSystem[18CS53]

38
Dept.ofCSE,ATMECE,Mysuru

therowheaderonthesameitemX,thenT_canobtainthelockbecausethelocking modes

are compatible

Figure22.6:Lockcompatibilitytables.(a)Acompatibilitytableforread/writelockingscheme.

(b)Acompatibilitytableforread/write/certifylockingscheme.

 Ontheotherhand,anentryofNointhetableindicatesthatthelocksarenotcompatible, so T’

must wait until T releases the lock

 Theideabehindmultiversion2PListoallowothertransactionsT’toreadanitemX

whileasingletransactionTholdsawritelockonX

 ThisisaccomplishedbyallowingtwoversionsforeachitemX;oneversionmustalways have

been written by some committed transaction

 ThesecondversionX’iscreatedwhenatransactionTacquiresawritelockontheitem

 Validation(Optimistic)ConcurrencyControlTechniques

 Inoptimisticconcurrencycontroltechniques,alsoknownasvalidationor

certificationtechniques,nocheckingisdonewhilethetransactionisexecuting

 Inthisscheme,updatesinthetransactionarenotapplieddirectlytothedatabaseitems until the

transaction reaches its end

 DatabaseManagementSystem[18CS53]

39
Dept.ofCSE,ATMECE,Mysuru

 Duringtransactionexecution,allupdatesareappliedtolocalcopiesofthedataitems that

are kept for the transaction

 At theendoftransactionexecution,a validationphasecheckswhetheranyofthe

transaction’s updates violate serializability.

 Therearethreephasesforthisconcurrencycontrolprotocol:

1. Read phase. A transaction can read values of committed data items from the

database. However, updates are applied only to local copies (versions) of the data

items kept in the transaction workspace.

2. Validation phase. Checking is performed to ensure that serializability will not be

violated if the transaction updates are applied to the database.

3. Write phase. If the validation phase is successful, the transaction updates are

appliedto thedatabase;otherwise,theupdates are discarded andthetransaction is

restarted.

 The idea behind optimistic concurrency control is to do all the checks at once; hence,

transaction execution proceeds with a minimum of overhead until the validation phase is

reached

 The techniques are called optimistic because they assume that little interference will

occur and hence that there is no need to do checking during transactionexecution.

 ThevalidationphaseforTichecksthat, foreachsuchtransactionTjthat iseither

committed or is in its validation phase, one of the following conditionsholds:

1. TransactionTjcompletesitswritephasebeforeTistartsitsreadphase.

2. Tistartsitswritephaseafter Tjcompletesitswritephase,andtheread_set of Ti

has no items in common with the write_set of Tj.

3. Both the read_set and write_set of Ti have no items in common with the

write_setofTj,andTjcompletesitsreadphasebeforeTicompletesitsread phase.

 GranularityofDataItemsandMultipleGranularityLocking

 Allconcurrencycontroltechniquesassumethatthedatabaseisformedofanumber of

named data items. A database item could be chosen to be one of thefollowing:

■ Adatabaserecord

■ Afieldvalueof adatabaserecord

■ Adiskblock

■ Awholefile

 DatabaseManagementSystem[18CS53]

40
Dept.ofCSE,ATMECE,Mysuru

■ Thewholedatabase

 Thegranularitycanaffecttheperformanceofconcurrencycontrolandrecovery

 GranularityLevelConsiderationsforLocking

 Thesizeofdataitemsisoftencalledthedataitemgranularity.

 Finegranularityreferstosmallitemsizes,whereas coarsegranularityreferstolarge item

sizes

 Thelargerthedataitemsizeis,thelowerthedegreeofconcurrencypermitted.

 For example, if the data item size is a disk block, a transaction T that needs to lock a

record B must lock the whole disk block X that contains B because a lock is associated

with the whole data item (block). Now, if another transaction S wants to lock a different

record C that happens to reside in the same block X in a conflicting lock mode, it is

forced to wait. If the data item size was a single record, transaction S would be able to

proceed, because it would be locking a different data item (record).

 The smaller the data item size is, the more the number of items in the database.

Because every item is associated with a lock, the system will have a larger number of

active locks to be handled by the lock manager. More lock and unlock operations will be

performed, causing a higher overhead

 Thebestitemsizedependsonthetypesoftransactionsinvolved.

 If a typical transaction accesses a small number of records, it is advantageous to have

the data item granularity be one record

 On the other hand, if a transaction typically accesses many records in the same file, it

may be better to have block or file granularity so that the transaction will consider all

those records as one (or a few) data items

 MultipleGranularityLevelLocking

 Since the best granularity size depends on the given transaction, it seems appropriate

that a database system should support multiple levels of granularity, where the

granularity level can be different for various mixes oftransactions

 Figure 22.7 shows a simple granularity hierarchy with a database containing two files,

each file containing several disk pages, and each page containing severalrecords.

 This can be used to illustrate a multiple granularity level 2PL protocol, where a lock

can be requested at any level

 DatabaseManagementSystem[18CS53]

41
Dept.ofCSE,ATMECE,Mysuru

Figure22.7Agranularityhierarchyforillustratingmultiplegranularitylevellocking

 Tomakemultiplegranularitylevellockingpractical,additionaltypesoflocks,called

intentionlocks,areneeded

 The idea behind intention locks is for a transaction to indicate, along the path from the rootto

the desired node, what type of lock (shared or exclusive) it will require from one of the

node’s descendants.

 Therearethreetypesofintentionlocks:

1. Intention-shared(IS)indicatesthat oneormoresharedlockswillberequestedonsome

descendant node(s).

2. Intention-exclusive(IX)indicatesthatoneormoreexclusivelockswillberequestedon some

descendant node(s).

3. Shared-intention-exclusive(SIX)indicatesthatthecurrentnodeislockedinshared

mode but that one or more exclusive locks will be requested on some descendant

node(s).

 Thecompatibilitytableofthethreeintentionlocks,andthesharedandexclusive locks, is shown

in Figure 22.8.

 DatabaseManagementSystem[18CS53]

42
Dept.ofCSE,ATMECE,Mysuru

Figure22.8:Lockcompatibilitymatrixformultiplegranularitylocking.

 Themultiplegranularitylocking(MGL)protocolconsistsofthefollowingrules:

1. Thelockcompatibility(basedonFigure22.8)mustbeadheredto.

2. Therootofthetreemustbelockedfirst, inanymode.

3. AnodeNcanbelockedbyatransactionTinSorISmodeonly iftheparent node N is

already locked by transaction T in either IS or IXmode.

4. A node N can be locked by a transaction T in X, IX,or SIX mode only ifthe

parentofnodeNisalreadylockedbytransactionTineitherIXorSIXmode.

5. AtransactionTcanlockanodeonlyifithasnotunlockedanynode(to enforce

the 2PL protocol).

6. AtransactionTcanunlockanode,N,onlyifnoneofthechildrenofnodeN

arecurrentlylockedbyT.

 Themultiplegranularitylevelprotocolisespeciallysuitedwhenprocessingamixof

transactions that include

(1) shorttransactionsthataccessonlyafewitems(recordsorfields)and

(2) longtransactionsthataccessentirefiles.

 DatabaseManagementSystem[18CS53]

43
Dept.ofCSE,ATMECE,Mysuru

Chapter3:IntroductiontoDatabaseRecoveryProtocols

 RecoveryConcepts

 RecoveryOutlineandCategorizationofRecovery Algorithms

 Recoveryfromtransactionfailuresusuallymeansthatthedatabaseis restoredto the

most recent consistent state just before the time of failure

 To do this, the system must keep information about the changes that were appliedto

data items by the various transactions. This information is typically kept in the

system log.

 Conceptually, we can distinguish two main techniques for recovery from

noncatastrophic transaction failures: deferred update and immediate update.

 Thedeferredupdatetechniques

- donotphysicallyupdatethedatabaseondiskuntilafteratransactionreachesits commit

point; then the updates are recorded in the database

- Before reaching commit, all transaction updates are recorded in the local

transactionworkspaceorinthemainmemorybuffersthattheDBMSmaintains

- Beforecommit,theupdatesarerecordedpersistentlyinthelog,andthenafter

commit, the updates are written to the database on disk

- If a transaction fails before reaching its commit point, it will not have changed the

database in any way, so UNDO is not needed

- It may be necessary to REDO the effect of the operations of a committed

transaction fromthe log,because theireffect maynot yet have beenrecorded in the

database on disk

- Hence,deferredupdateisalsoknownastheNO-UNDO/REDO algorithm

 Theimmediateupdatetechniques

- the database may be updated by some operations of a transaction before the

transaction reaches its commit point.

- However, these operations must also be recorded in the log on disk by force-

writing before they are applied to the database on disk, making recovery still

possible

 DatabaseManagementSystem[18CS53]

44
Dept.ofCSE,ATMECE,Mysuru

- If a transaction fails after recording some changes in the database on disk but

before reaching its commit point, the effect of its operations on the database must

be undone; that is, the transaction must be rolled back

- In the general case of immediate update, both undo and redo may be required

during recovery.

- This technique, known as the UNDO/REDO algorithm, requires both operations

during recovery, and is used most often in practice.

 Caching(Buffering)ofDiskBlocks

 Itisconvenienttoconsiderrecoveryintermsofthedatabasediskpages(blocks).

 Typicallyacollectionofin-memorybuffers,calledtheDBMScache,iskeptunderthe control

of the DBMS for the purpose of holding these buffers.

 Adirectoryforthecacheisusedtokeeptrackofwhichdatabaseitemsareinthe buffers

 Thiscanbeatableof<Disk_page_address,Buffer_location,...>entries.

 WhentheDBMSrequestsactiononsomeitem,first itchecksthecachedirectoryto

determine whether the disk page containing the item is in the DBMScache.

 Ifit isnot,theitemmustbelocatedondisk, andtheappropriatediskpagesarecopied into

thecache.Itmay benecessarytoreplace(or flush)someofthecachebuffersto make

space available for the new item.

 TheentriesintheDBMScachedirectoryholdadditionalinformationrelevanttobuffer

management.

 Associatedwitheachbufferinthecacheisadirtybit,whichcanbeincludedinthe directory

entry, to indicate whether or not the buffer has beenmodified.

 When a page is first readfrom the database disk into a cache buffer, a new entry is

insertedinthecachedirectorywiththenewdiskpageaddress,andthedirtybit issetto 0 (zero).

 Assoonasthebufferismodified,thedirtybitforthecorrespondingdirectoryentryisset to 1

(one)

 Additionalinformation,suchasthetransactionid(s)ofthetransaction(s)thatmodified the

buffer can also be kept in the directory

 Whenthebuffercontentsarereplaced(flushed)fromthecache,thecontentsmustfirst be

written back to the corresponding disk page only if its dirty bit is 1

 DatabaseManagementSystem[18CS53]

45
Dept.ofCSE,ATMECE,Mysuru

 Anotherbit,calledthepin-unpinbit,isalsoneeded—apageinthecacheis pinned(bit value 1

(one)) if it cannot be written back to disk as yet.

 Twomainstrategiescanbeemployedwhenflushingamodifiedbufferbacktodisk.

- The first strategy, known as in-place updating, writes the buffer to the same

original disk location, thus overwriting the old value of any changed data items on

disk. Hence, a single copy of each database disk block ismaintained.

- The second strategy, known as shadowing, writes an updated buffer at adifferent

disk location, so multiple versions of data items can be maintained, but this

approach is not typically used in practice.

 Write-AheadLogging,Steal/No-Steal,andForce/No-Force
 Whenin-placeupdatingisused,itisnecessarytousealogforrecovery

 In this case, the recovery mechanism must ensure that the BFIM of the data item is

recorded in the appropriate log entry and that the log entry is flushed to disk before the

BFIM is overwritten with the AFIM in the database ondisk.

 This process is generally known as write-aheadlogging, and is necessary to be ableto

UNDO the operation if this is required during recovery

 A REDO-type log entry includes the new value (AFIM) of the item written by the

operation since this is needed to redo the effect of the operation from the log (by setting

the item value in the database on disk to its AFIM).

 The UNDO-type log entries include the old value (BFIM) of the item since this is

needed to undo the effect of the operation from the log (by setting the item value in the

database back to its BFIM)

 In an UNDO/REDO algorithm, both types of log entries are combined. Additionally,

when cascading rollback is possible, read_item entries in the log are considered to be

UNDO-type entries

 Standard DBMS recovery terminology includes the terms steal/no-steal and force/no-

force, whichspecifytherulesthat govern when apagefromthedatabasecan bewritten to

disk from the cache:

1. If a cache buffer page updated by a transaction cannot be written to disk before

the transaction commits, the recovery method is called a no-steal approach.The

pin-unpin bit will be used to indicate if a page cannot be written back to disk. On

the other hand, if the recovery protocol allows writing an updated bufferbefore the

transaction commits, it is called steal. Steal is used when the DBMS

 DatabaseManagementSystem[18CS53]

46
Dept.ofCSE,ATMECE,Mysuru

cache (buffer) manager needs a buffer frame for another transaction and the

buffer manager replaces an existing page that had been updated but whose

transaction has not committed. The no-steal rule means that UNDO will never be

needed during recovery, since a committed transaction will not have any of its

updates on disk before it commits.

2. If all pages updated by a transaction are immediately written to disk before the

transaction commits, it is called a force approach. Otherwise, it is called no-

force. The force rule means that REDO will never be needed during recovery,

since any committed transaction will have all its updates on disk before it is

committed.

 Thedeferredupdate(NO-UNDO)recoveryschemefollowsano-stealapproach.

 However,typicaldatabasesystemsemployasteal/no-forcestrategy.

 The advantage of steal is that it avoids the need for a very large buffer space to store all

updated pages in memory.

 The advantage of no-force is that an updated page of a committed transaction may still

be in the buffer when another transaction needs to update it, thus eliminatingthe I/O cost

to write that page multiple times to disk, and possibly to have to read it again from disk.

 To permit recovery when in-place updating is used, the appropriate entries required for

recovery must be permanently recorded inthe log on disk before changes are applied to

the database.

 For example,considerthe following write-aheadlogging(WAL) protocolfor arecovery

algorithm that requires both UNDO and REDO:

1. The before image of an item cannot be overwritten by its after image in thedatabase

on disk until all UNDO-type log records for the updating transaction— upto this

point—have been force-written to disk.

2. The commit operation of a transaction cannot be completed until all the REDO-type

and UNDO-type log records for that transaction have been force written todisk.

 CheckpointsintheSystemLogandFuzzyCheckpointing

 Anothertypeofentryinthelogiscalledacheckpoint.

 A[checkpoint,list of active transactions] record iswritteninto thelogperiodicallyat that

point when the system writes out to the database on disk all DBMS buffers that have

been modified

 DatabaseManagementSystem[18CS53]

47
Dept.ofCSE,ATMECE,Mysuru

 As a consequence of this, all transactions that have their [commit, T] entries in the log

before a [checkpoint] entry do not need to have their WRITE operations redone in case

of a system crash, since all their updates will be recorded in the database on diskduring

checkpointing

 As part of checkpointing, the list of transaction idsfor active transactions at the time of

the checkpoint is included in the checkpoint record, so that these transactions can be

easily identified during recovery.

 TherecoverymanagerofaDBMSmustdecideatwhatintervalstotakeacheckpoint.

 The interval may be measured intime—say, every m minutes—or in the number t of

committedtransactionssincethelastcheckpoint,wherethevaluesof mortaresystem

parameters

 Takingacheckpointconsistsofthefollowingactions:

1. Suspendexecutionoftransactionstemporarily.

2. Force-writeallmainmemorybuffersthathavebeenmodifiedtodisk.

3. Writea[checkpoint]recordtothelog,andforce-writethelogtodisk.

4. Resumeexecutingtransactions.

 Thetimeneededtoforce-writeallmodifiedmemorybuffersmaydelaytransaction

processing because of step 1

 Toreducethisdelay,it iscommontouseatechniquecalledfuzzycheckpointing.

 In this technique, the system can resume transaction processing after a

[begin_checkpoint]record is writtentothelog without havingtowaitforstep 2tofinish.

 Whenstep2iscompleted,an[end_checkpoint,...]recordiswritten inthelogwith the

relevant information collected during checkpointing.

 TransactionRollbackandCascadingRollback

 Ifatransactionfailsforwhateverreasonafterupdatingthedatabase,butbeforethe

transaction commits, it may be necessary to roll back the transaction

 Ifanydataitemvalueshavebeenchangedbythetransactionandwrittentothe

database, they must be restored to their previous values (BFIMs)

 Theundo-typelogentriesareusedtorestoretheoldvalues ofdataitemsthatmustbe rolled

back

 DatabaseManagementSystem[18CS53]

48
Dept.ofCSE,ATMECE,Mysuru

 IfatransactionTisrolledback, anytransactionSthat has,intheinterim, readthevalue of some

data item X written by T must also be rolled back

 Similarly, once S is rolled back, any transaction R that has read the value of some data

item Y written by S must also be rolled back; and so on.

 This phenomenon is called cascading rollback, and can occur when the recovery

protocol ensures recoverable schedules but does not ensure strict or cascadeless

schedules

 Figure23.1showsanexamplewherecascadingrollbackisrequired.

 ThereadandwriteoperationsofthreeindividualtransactionsareshowninFigure

23.1(a).

 Figure23.1(b)showsthesystemlogatthepointof asystemcrashforaparticular

execution schedule of these transactions.

 ThevaluesofdataitemsA,B,C,andD,whichareusedbythetransactions,areshown to the

right of the system log entries.

 We assumethattheoriginalitemvalues,shown inthefirstline, are A=30,B=15,C= 40, and

D = 20.

 At thepointofsystemfailure,transactionT3hasnotreacheditsconclusionandmust be

rolled back.

 TheWRITEoperationsof T3,markedbyasingle*inFigure23.1(b), arethe T3

operations that are undone during transaction rollback.

 Figure23.1(c)graphicallyshowstheoperationsofthedifferenttransactionsalongthe time

axis

 DatabaseManagementSystem[18CS53]

49
Dept.ofCSE,ATMECE,Mysuru

Figure23.1:Illustratingcascadingrollback(aprocessthatneveroccursinstrictorcascadeless

schedules). (a) The read and write operations of three transactions. (b) System log at point of

crash. (c) Operations before the crash.

 DatabaseManagementSystem[18CS53]

50
Dept.ofCSE,ATMECE,Mysuru

 TransactionActionsThatDoNotAffecttheDatabase

 In general, a transaction will have actions that do not affect the database, such as

generating and printing messages or reports from information retrieved from the

database

 If a transaction fails before completion, we may not want the user to get these reports,

since the transaction has failed to complete.

 If such erroneous reports are produced, part of the recovery process would have to

inform the user that these reports are wrong, since the user may take an action basedon

these reports that affects the database.

 Hence, such reports should be generated only after the transaction reaches its commit

point.

 A common method of dealing with such actions is to issue the commands that generate

the reports but keep them as batch jobs, which are executed only after the transaction

reaches its commit point. Ifthe transaction fails, the batch jobs are canceled.

 NO-UNDO/REDORecoveryBasedonDeferredUpdate

 The idea behind deferred update is to defer or postpone any actual updates to the database

on disk until the transaction completes its execution successfully and reaches its commit

point.

 During transaction execution, the updates are recorded only in the log and in the cache

buffers.

 After the transaction reaches its commit point and the log is forcewritten to disk, the

updates are recorded in the database.

 If a transaction fails before reaching its commit point, there is no need to undo any

operations because the transaction has not affected the database on disk in anyway.

 Therefore, only REDO type log entries are needed in the log, which include the new

value (AFIM) of the item written by a write operation.

 The UNDO-type log entries are not needed since no undoing of operations will be

required during recovery.

 Wecanstateatypicaldeferredupdateprotocolasfollows:

1. Atransactioncannotchangethedatabaseondiskuntilitreachesitscommitpoint.

2. AtransactiondoesnotreachitscommitpointuntilallitsREDO-typelogentriesare

recorded in the log and the log buffer is force-written todisk.

 DatabaseManagementSystem[18CS53]

51
Dept.ofCSE,ATMECE,Mysuru

 Formultiusersystemswithconcurrencycontrol,theconcurrencycontrolandrecovery

processes are interrelated.

 Assumingthat[checkpoint]entriesareincludedinthelog,apossiblerecoveryalgorithm for

this case, which we call RDU_M (Recovery using Deferred Update in a Multiuser

environment), is as follows:

 Procedure RDU_M (NO-UNDO/REDO with checkpoints). Use two lists of

transactions maintained by the system: the committed transactions T since the

last checkpoint (commit list), and the active transactions T_ (active list). REDO

all the WRITE operations of the committed transactions from the log, in the order

in which they were written into the log. The transactions that are active and did

not commit are effectively canceled and must be resubmitted.

 TheREDOprocedureisdefinedasfollows:

 Procedure REDO (WRITE_OP). Redoing a write_item operation WRITE_OP

consists of examining its log entry [write_item, T, X, new_value] and setting the

value of item X in the database to new_value, which is the after image(AFIM).

 Figure23.2illustratesatimelineforapossiblescheduleofexecutingtransactions.

 DatabaseManagementSystem[18CS53]

52
Dept.ofCSE,ATMECE,Mysuru

 Figure23.3showsanexampleofrecoveryforamultiusersystemthatutilizestherecovery and

concurrency control method

 The method’s main benefit is that transaction operations never need to be undone, for

two reasons:

1. A transaction does not record any changes in the database on disk until after it

reaches its commit point—that is, until it completes its execution successfully. Hence,

a transaction is never rolled back because of failure during transactionexecution.

2. A transaction will never read the value of an item that is written by an uncommitted

transaction, becauseitems remain locked until atransaction reaches its commit point.

Hence, no cascading rollback will occur.

 DatabaseManagementSystem[18CS53]

53
Dept.ofCSE,ATMECE,Mysuru

 RecoveryTechniquesBasedonImmediateUpdate
 In these techniques, when a transaction issues an update command, the database on

disk can be updated immediately, without any need to wait for the transaction to reachits

commit point.

 Provisions must be made for undoing the effect of update operations that have been

applied to the database by a failed transaction. This is accomplished by rolling back the

transaction and undoing the effect of the transaction’s write_item operations.

 Therefore, the UNDO-type log entries, which include the old value (BFIM) of the item,

must be stored in the log. Because UNDO can be needed during recovery, these

methodsfollowa steal strategyfordeciding when updatedmainmemorybufferscan be

written back to disk

 Theoretically,wecandistinguishtwomaincategoriesofimmediateupdatealgorithms.

 If the recovery technique ensures that all updates of a transaction are recorded in the

database on disk before the transaction commits, there is never a need to REDO any

operations of committed transactions. This is called the UNDO/NO-REDO recovery

algorithm.

 In this method, all updates by a transaction must be recorded on disk before the

transactioncommits,sothat REDO is never needed. Hence,thismethod mustutilize the

force strategy for deciding when updated main memory buffers are written back todisk

 If the transaction is allowed to commit before all its changes are written to the database,

we havethemostgeneralcase, knownasthe UNDO/REDO recoveryalgorithm.Inthis

case, the steal/no-force strategy is applied.

 When concurrent execution is permitted, the recovery process again depends on the

protocols used for concurrency control.

 The procedureRIU_M(Recovery usingImmediate Updates for aMultiuser environment)

outlines a recovery algorithm for concurrent transactions with immediate update

(UNDO/REDO recovery).

 ProcedureRIU_M(UNDO/REDOwithcheckpoints).

1. Usetwo lists of transactions maintained by the system: the committed transactions

since the last checkpoint and the active transactions.

2. Undo all the write_item operations of the active (uncommitted) transactions, using

the UNDO procedure. The operations should be undone in the reverse of the order in

which they were written into the log.

3. Redoallthewrite_itemoperationsofthecommittedtransactionsfromthelog,in

 DatabaseManagementSystem[18CS53]

54
Dept.ofCSE,ATMECE,Mysuru

theorderinwhichtheywerewrittenintothelog,usingtheREDOproceduredefined earlier.

 TheUNDOprocedureisdefinedasfollows:

Procedure UNDO (WRITE_OP). Undoing a write_item operation write_op consists of

examining its log entry [write_item, T, X, old_value, new_value] and setting the value of

item X in the database to old_value, which is the before image (BFIM). Undoing a

number of write_item operations from one or more transactions from the log must

proceed in the reverse order from the order in which the operations were written in the

log.

 ShadowPaging

 Thisrecoveryschemedoesnotrequiretheuseofaloginasingle-userenvironment.

 Inamultiuserenvironment,alogmaybeneededfortheconcurrencycontrolmethod.

 Shadowpagingconsidersthedatabasetobemadeupofanumberoffixedsizediskpages (or disk

blocks)—say, n—for recovery purposes

 Adirectorywithnentries5isconstructed, wheretheithentrypointstotheithdatabase page

on disk.

 Thedirectoryiskept inmainmemory ifit isnottoolarge,andallreferences—readsor

writes—to database pages on disk go through it.

 Whenatransactionbeginsexecuting,thecurrentdirectory—whoseentriespointtothe most

recent or current database pages on disk—is copied into a shadowdirectory.

 Theshadowdirectoryisthensavedondiskwhilethecurrentdirectoryisusedbythe

transaction.

 Duringtransactionexecution,theshadowdirectoryisnevermodified.

 When a write_item operation is performed, a new copy of the modified database page is

created, but the old copy of that page is not overwritten. Instead, the new page is written

elsewhere—on some previously unused disk block.

 The current directory entry is modified to point to the new disk block, whereas the shadow

directory is not modified and continues to point to the old unmodified diskblock.

 Figure 23.4 illustrates the concepts of shadow and current directories. For pages updated

by the transaction, two versions are kept.

 The old version is referenced by the shadow directory and the new version by the current

directory.

 DatabaseManagementSystem[18CS53]

55
Dept.ofCSE,ATMECE,Mysuru

 Torecoverfromafailureduringtransactionexecution,itissufficienttofreethemodified

database pages and to discard the currentdirectory.

 Thestateofthedatabasebeforetransactionexecutionisavailablethroughtheshadow

directory, and that state is recovered by reinstating the shadowdirectory.

 Sincerecoveryinvolvesneitherundoingnorredoingdataitems,thistechniquecanbe

categorized as a NOUNDO/ NO-REDO technique for recovery.

 Disadvantageofshadowpaging:

- theupdateddatabasepageschangelocationondisk

- ifthedirectoryislarge,theoverheadofwritingshadowdirectoriestodiskas

transactions commit is significant

- Afurthercomplicationishowtohandlegarbagecollectionwhenatransactioncommits

- Anotherissueisthattheoperationtomigratebetweencurrentandshadowdirectories must

be implemented as an atomicoperation.

 TheARIESRecoveryAlgorithm

 Itisusedinmanyrelationaldatabase-relatedproductsofIBM.

 ARIESusesasteal/no-forceapproachforwriting,anditisbasedonthreeconcepts:

1. write-aheadlogging

2. repeatinghistoryduringredo,and

3. loggingchangesduringundo.

 DatabaseManagementSystem[18CS53]

56
Dept.ofCSE,ATMECE,Mysuru

 repeating history, means that ARIES will retrace all actions of the database system

prior to the crash to reconstruct the database state when the crash occurred.

Transactions that were uncommitted at the time of the crash (active transactions) are

undone.

 logging during undo, will prevent ARIES from repeating the completed undooperations

if a failure occurs during recovery, which causes a restart of the recovery process.

 TheARIESrecoveryprocedureconsistsofthreemainsteps:

1. Analysis

2. REDO

3. UNDO.

 Theanalysisstep

- identifiesthedirty(updated)pagesinthebufferandthesetoftransactionsactive at the

time of the crash

- TheappropriatepointinthelogwheretheREDOoperationshouldstartisalso

determined

 TheREDO phase

- reappliesupdatesfromthelogtothedatabase.

- CertaininformationintheARIESlogwillprovidethestartpointforREDO,from which

REDO operations are applied until the end of the log isreached

 TheUNDOphase

- thelogisscannedbackwardandtheoperationsoftransactionsthatwereactiveat the

time of the crash are undone in reverse order.

 The information needed for ARIES to accomplish its recovery procedure includes the

log, theTransactionTable,andtheDirtyPageTable.Additionally, checkpointingisused.

 Thesetablesaremaintainedbythetransactionmanagerandwrittentothelogduring

checkpointing.

 InARIES,everylogrecordhasanassociatedlogsequencenumber(LSN) thatis

monotonically increasing and indicates the address of the log record ondisk.

 EachLSNcorrespondstoaspecificchange(action)ofsometransaction.

 Besidesthelog,twotablesareneededforefficientrecovery:theTransactionTableand the

Dirty Page Table, which are maintained by the transaction manager.

 Whenacrashoccurs,thesetablesarerebuiltintheanalysisphaseofrecovery.

 DatabaseManagementSystem[18CS53]

57
Dept.ofCSE,ATMECE,Mysuru

 The Transaction Table contains an entry for each active transaction, with information

such asthe transaction ID, transaction status, and the LSN of themostrecent log record

for the transaction.

 The Dirty Page Table contains an entry for each dirty page in the buffer, which includes

the page ID and the LSN corresponding to the earliest update to that page.

 Checkpointing in ARIES consists of the following: writing a begin_checkpoint record to

the log, writing an end_checkpoint record to the log, and writing the LSN of the

begin_checkpoint record to a special file.

 Thisspecialfileisaccessedduringrecoverytolocatethelastcheckpointinformation

 After a crash, the ARIES recovery manager takes over. Information from the last

checkpoint is first accessed through the special file.

 The analysis phase starts at the begin_checkpoint record and proceeds to the end of

the log

 The REDO phase follows next. To reduce the amount of unnecessary work, ARIES

starts redoing at a point in the log where it knows (for sure) that previous changes todirty

pages have already been applied to the database on disk.

 DatabaseBackupandRecoveryfromCatastrophicFailures

 Akeyassumptionhasbeenthatthesystemlogismaintainedonthediskandisnotlost as a

result of the failure.

 Similarly,theshadowdirectorymustbestoredondisktoallowrecoverywhenshadow paging

is used.

 Therecoverytechniquesusetheentriesinthesystemlogortheshadowdirectoryto recover

from failure by bringing the database back to a consistentstate.

 TherecoverymanagerofaDBMSmustalsobeequippedtohandlemore catastrophic

 failuressuchasdiskcrashes.

 The main technique used to handle such crashes is a database backup, in which the

whole database and the log are periodically copied onto a cheap storage medium such

as magnetic tapes or other large capacity offline storage devices.

 Incaseof acatastrophicsystemfailure, thelatestbackupcopycanbereloadedfromthe tape to

the disk, and the system can be restarted.

 Data from critical applications such as banking, insurance, stock market, and other

databases is periodically backed up in its entirety and moved to physically separate safe

locations.

 DatabaseManagementSystem[18CS53]

58
Dept.ofCSE,ATMECE,Mysuru

 Toavoid losing all the effects of transactions that have been executed since the last backup,

it is customary to back up the system log at more frequent intervals than full databasebackup

by periodically copying it to magnetictape.

 AssignmentQuestions

1. Explainpropertiesofatransactionwithstatetransitiondiagram.

2. Discusstheproblemsthatcanoccurwhenconcurrenttransactionsareexecuted.

3. Discussthedifferenttypesoffailures.Whatismeantbycatastrophicfailure?

4. Discusstheactionstakenbytheread_itemandwrite_itemoperationsonadatabase.

5. Whatistwo-phaselockingprotocol?Howdoesitguaranteeserializaility?

6. Whatisaschedule?Explainwithexampleserial,nonserialandconflictserializable

schedules.

7. Writeshortnoteson

1. Writeaheadlogprotocol

2. TimestampOrdering

3. Twophaselockingprotocol

8. Discusstheproblemsofdeadlockandstarvation,andthedifferentapproachestodealing with

these problems.

9. Describethewait-dieandwound-waitprotocolsfordeadlockprevention.

10. Discussthedeferredupdatetechniqueofrecovery.Whataretheadvantagesand

disadvantages of this technique?

11. Describetheshadowpagingrecoverytechnique.

12. DescribethethreephasesoftheARIESrecoverymethod.

 ExpectedOutcome

 Toexecutetransactionsbycreatingschedules

 Toobtainequivalentand serializableschedulestoavoidanomalies.

 Tocheckwhetherthegivenscheduleisserailizableornot.

 Tostudy locking protocols

 Toimproveresourceutilization byapplyingvarious formsoflocking protocol.

 DatabaseManagementSystem[18CS53]

59
Dept.ofCSE,ATMECE,Mysuru

 FurtherReading

 https://www.smartdraw.com/entity-relationship-diagram/

 https://en.wikipedia.org/wiki/Database_normalization

 www.databasteknik.se/webbkursen/relalg-lecture

 https://technet.microsoft.com/en-us/library/bb264565(v=sql.90).aspx

 pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/.../Ch16_Overview_Xacts.pdf

http://www.smartdraw.com/entity-relationship-diagram/
http://www.smartdraw.com/entity-relationship-diagram/
http://www.databasteknik.se/webbkursen/relalg-lecture

	SUBJECT TITLE AND CODE:DATABASE MANAGEMENT SYSTEMS -21CS53
	INSTITUTIONAL MISSION AND VISION
	ProgramSpecificOutcomes(PSOs)

	Module1
	Database
	DatabaseManagementSystem(DBMS)
	An Example
	Fig1.1(b):A databasethatstores studentandcourseinformation

	CharacteristicsoftheDatabaseApproach
	Databaseapproachvs.FileProcessingapproach
	1. Self-DescribingNatureofaDatabaseSystem
	2. InsulationbetweenProgramsandData,andDataAbstraction
	Data abstraction
	3. SupportofMultiple ViewsoftheData
	4. SharingofDataandMultiuserTransaction Processing

	DatabaseUsers

	ActorsontheScene
	4. SystemAnalystsandApplicationProgrammers(SoftwareEngineers)
	WorkersbehindtheScene

	AdvantagesofUsingtheDBMSApproach
	1. ControllingRedundancy
	2. RestrictingUnauthorizedAccess
	3. ProvidingPersistentStorageforProgramObjects
	4. ProvidingStorageStructuresandSearchTechniquesforEfficientQueryProcessing
	5. ProvidingBackupandRecovery
	6. ProvidingMultipleUser Interfaces
	7. RepresentingComplexRelationshipsamongData
	8. EnforcingIntegrityConstraints
	9. PermittingInferencingandActionsUsingRules
	10. AdditionalImplicationsofUsingtheDatabaseApproach
	HistoryofDatabaseApplications
	 EarlyDatabaseApplicationsUsingHierarchicalandNetworkSystems
	 ProvidingData AbstractionandApplicationFlexibilitywithRelational Databases
	 Object-OrientedApplicationsandtheNeedforMoreComplexDatabases
	 InterchangingDataon theWebforE-CommerceUsingXML
	 ExtendingDatabaseCapabilitiesforNew Applications
	 DatabasesversusInformationRetrieval

	WhenNottoUseaDBMS
	Introduction

	DataModels,Schemas,andInstances
	DataModel
	CategoriesofDataModels
	Databaseschema
	Schemadiagram
	Schemaconstruct
	Databasestateor snapshot

	Three-SchemaArchitectureandDataIndependence
	TheThree-SchemaArchitecture
	DataIndependence

	DatabaseLanguagesandInterfaces
	DBMSLanguages
	DataDefinitionLanguage(DDL)
	StorageDefinitionLanguage (SDL)
	ViewDefinitionLanguage(VDL),
	DataManipulationLanguage(DML)
	DBMSInterfaces

	TheDatabaseSystemEnvironment
	DBMSComponent Modules
	DatabaseSystem Utilities
	Tools,ApplicationEnvironments,andCommunications Facilities
	 Tools
	 Applicationdevelopmentenvironments

	CentralizedandClient/ServerArchitecturesforDBMSs
	CentralizedDBMSsArchitecture
	 Disadvantages:
	BasicClient/ServerArchitectures
	 idea
	Two-TierClient/ServerArchitecturesforDBMSs
	 Serverhandles
	 Clienthandles

	Object-orientedDBMSs
	Three-Tierandn-TierArchitecturesforWeb Applications
	 Client
	 ApplicationserverortheWeb server
	 Presentationlayer
	 Thebusinesslogiclayer
	 Thebottomlayer

	N-tier Architecture
	 Advantage

	ClassificationofDatabaseManagementSystems
	Introduction
	UsingHigh-LevelConceptualDataModelsforDatabaseDesign

	EntityTypes,EntitySets,Attributes,andKeys
	Entitiesand Attributes
	Typesofattributes:
	1. CompositeversusSimple(Atomic)Attributes
	2. Single-ValuedversusMultivaluedAttributes
	4. NullValueAttribute(OptionalAttribute)

	Entity Types, Entity Sets, Keys, and ValueSets Entity Types
	EntitySets
	KeyAttributesofanEntityType
	ValueSets(Domains)ofAttributes

	ASampleDatabaseApplication
	RelationshipTypes,RelationshipSets,Roles,andStructuralConstraints
	RelationshipTypes,Sets,andInstances

	RelationshipDegree,RoleNames,andRecursiveRelationships
	DegreeofaRelationshipType
	RelationshipsasAttributes
	RoleNamesandRecursiveRelationships
	ConstraintsonBinaryRelationshipTypes
	CardinalityRatiosforBinaryRelationships
	Exampleofa 1:1binary relationship
	ExampleofaM:Nbinary relationship

	ParticipationConstraintsandExistenceDependencies
	Total participation
	Partial participation

	AttributesofRelationshipTypes

	WeakEntityTypes
	ERDiagrams,NamingConventions,andDesignIssues
	SummaryofNotationforERDiagrams
	Prope r Nami ng of Sche ma Const ructs
	DesignChoicesforERConceptual Design
	AlternativeNotationsforERDiagrams

	RelationshipTypesofDegreeHigherthanTwo
	ConstraintsonTernary(orHigher-Degree)Relationships

	SpecializationandGeneralization
	Specialization
	Generalization

	Module2
	RelationalModelConcepts
	Domain
	Attribute
	Tuple
	Relation schema
	Relation(orrelation state)

	CharacteristicsofRelations
	1. OrderingofTuples in aRelation
	2. OrderingofValueswithin aTupleandanAlternativeDefinition ofaRelation
	3. Valuesand NULLsintheTuples
	4. Interpretation(Meaning)ofaRelation

	RelationalModelNotation

	RelationalModelConstraintsandRelationalDatabaseSchemas
	DomainConstraints
	KeyConstraintsandConstraintsonNULLValues
	superkey
	Key
	Candidate key
	Primarykey

	RelationalDatabasesandRelationalDatabaseSchemas
	Integrity,ReferentialIntegrity,andForeignKeys Entity integrity constraint
	Referentialintegrityconstraint
	OtherTypesofConstraints Semantic integrity constraints
	Functionaldependencyconstraint
	Stateconstraints(static constraints)
	Transitionconstraints(dynamic constraints)

	UpdateOperations,Transactions,andDealingwithConstraintViolations
	TheInsertOperation
	Examples:
	TheDeleteOperation
	Examples: (1)
	TheUpdateOperation
	Examples: (2)
	TheTransactionConcept

	Chapter2:RelationalAlgebra
	UnaryRelationalOperations:SELECTandPROJECT
	TheSELECTOperation
	Examples:
	SELECT*FROMEMPLOYEEWHEREDno=4ANDSalary>25000;
	Example:
	SequencesofOperationsandtheRENAMEOperation
	DEP5_EMPS←σ Dno=5(EMPLOYEE)

	RelationalAlgebraOperationsfromSetTheory
	TheUNION,INTERSECTION,and MINUSOperations
	STUDENT∪INSTRUCTOR STUDENT∩INSTRUCTOR
	TheCARTESIANPRODUCT(CROSSPRODUCT)Operation

	BinaryRelationalOperations:JOINandDIVISION
	TheJOIN Operation
	VariationsofJOIN:TheEQUIJOINand NATURALJOIN
	PROJ_DEPT← PROJECT* DEPT
	DEPT_LOCS←DEPARTMENT* DEPT_LOCATIONS
	ACompleteSetofRelationalAlgebraOperations
	TheDIVISIONOperation
	NotationforQueryTrees

	AdditionalRelationalOperations
	GeneralizedProjection
	AggregateFunctionsandGrouping
	RecursiveClosureOperations
	OUTERJOINOperations
	TheOUTER UNIONOperation

	ExamplesofQueriesinRelationalAlgebra

	Chapter3:MappingConceptualDesignintoaLogicalDesign
	RelationalDatabaseDesignusingER-to-Relationalmapping
	Step1:MappingofRegularEntityTypes
	Step2:MappingofWeakEntityTypes
	Step3:MappingofBinary1:1Relationship Types
	1. Theforeign keyapproach
	2. Mergedrelationapproach:
	3. Cross-referenceorrelationshiprelationapproach:
	Step4:Mappingof Binary1:NRelationshipTypes
	Step5:MappingofBinaryM:NRelationshipTypes
	Step6:MappingofMultivaluedAttributes
	Step7:MappingofN-aryRelationship Types

	Chapter4:SQL
	SQLDataDefinitionandDataTypes
	SchemaandCatalogConceptsinSQL
	TheCREATETABLECommandinSQL
	AttributeDataTypesandDomainsin SQL
	2. Character-stringdatatypes
	Additionaldatatypes

	SpecifyingConstraintsinSQL
	SpecifyingAttributeConstraintsandAttribute Defaults
	SpecifyingKeyandReferentialIntegrityConstraints
	Giving Names toConstraints
	SpecifyingConstraintsonTuplesUsingCHECK

	BasicRetrievalQueriesinSQL
	TheSELECT-FROM-WHEREStructureofBasicSQLQueries
	Examples:
	AmbiguousAttributeNames,Aliasing,Renaming,andTupleVariables
	UnspecifiedWHEREClauseandUseoftheAsterisk
	Tablesas Sets inSQL
	UNION
	SubstringPatternMatchingandArithmeticOperators
	Severalmorefeaturesof SQL

	OrderingofQueryResults

	INSERT,DELETE,andUPDATEStatementsinSQL
	TheINSERTCommand
	TheDELETECommand
	Example:
	TheUPDATECommand

	AdditionalFeaturesofSQL
	QuestionBank
	Module3
	MoreComplexSQLRetrievalQueries
	ComparisonsInvolvingNULLandThree-ValuedLogic
	Example

	NestedQueries,Tuples,andSet/MultisetComparisons
	OR
	NestedQueries::ComparisonOperators
	CorrelatedNestedQueries
	TheEXISTSandUNIQUEFunctionsinSQL
	EXISTS Functions
	WHEREEXISTS(SELECT*
	AND
	NOTEXISTSFunctions
	WHERENOTEXISTS(SELECT *

	UNIQUEFunctions
	ExplicitSetsandRenamingofAttributesinSQL

	JoinedTablesinSQLandOuterJoins
	INNERJOIN
	EQUIJOINandNATURALJOIN
	OUTER JOIN
	MULTIWAYJOIN

	AggregateFunctionsinSQL
	Examples
	Grouping:TheGROUPBYandHAVINGClauses

	DiscussionandSummaryofSQLQueries

	SpecifyingConstraintsasAssertionsandActionsasTriggers
	SpecifyingGeneralConstraintsasAssertionsinSQL
	Generalform:

	IntroductiontoTriggersinSQL
	Generalform:
	FOREACHROW|FOREACHSTATEMENT
	Intheaction, youmaywanttoreference:
	Triggerbody
	Examples:
	FOREACHROW
	Assertionsvs.Triggers
	Example:Triggervs.Assertion

	Views(VirtualTables)inSQL
	ConceptofaViewinSQL
	SpecificationofViewsinSQL
	Example1:
	Example2:

	ViewImplementation,ViewUpdateandInline Views
	AND

	SchemaChangeStatementsinSQL
	The DROPCommand
	TheALTERCommand
	AlterTable-Alter/Modify Column

	Chapter2:DatabaseApplicationDevelopment
	Introduction
	AccessingDatabasesfromapplications
	EmbeddedSQL
	DeclaringVariablesandExceptions
	EXECSQLBEGINDECLARESECTIONandEXECSQLENDDECLARESECTION
	EXECSQLBEGINDECLARESECTION
	EXECSQLENDDECLARESECTION
	EmbeddingSQL statements
	EXECSQLINSERTINTOsailorsVALUES(:c_sname,:c_sid,:c_rating,:c_age);
	EXECSQLWHENEVER[SQLERROR|NOTFOUND][CONTINUE|GOTOstmt]

	Cursors
	BasicCursorDefinitionandUsage
	Examples:
	OPEN sinfo;
	FETCHsinfoINTO:c_sname,:c_age;
	CLOSEsinfo;
	PropertiesofCursors
	DECLAREcursorname[INSENSITIVE][SCROLL]CURSOR [WITH HOLD]
	[FORREADONLYIFORUPDATE]

	DynamicSQL
	Example:

	Architecture
	Application
	Drivermanager
	Drivers
	Datasources
	TypeIBridges:
	TypeII DirectTranslationtotheNativeAPIviaNon-Java Driver:
	TypeIII~~NetworkBridges:
	TypeIV-DirectTranslationtotheNativeAPIviaJavaDriver:

	JDBCCLASSESANDINTERFACES
	JDBCDriverManagement
	Class.forName("oracle/jdbc.driver.OracleDriver");

	Connections
	jdbc:<subprotocol>:<otherParameters>

	ExecutingSQLStatements
	ResultSets
	MatchingJavaandSQLDataTypes
	ExceptionsandWarnings

	ExaminingDatabaseMetadata
	7stepsforjdbc:

	SQLJ:SQL-JAVA
	STOREDPROCEDURES
	Syntax:
	Is/As
	Begin
	Exception
	CreatingaSimpleStoredProcedure
	dynamicprocedures.
	CallingStored Procedures

	CallingStoredProceduresfromJDBC
	CallingStoredProceduresfromSQLJ

	SQL/PSM

	Chapter3:InternetApplications
	Introduction
	THETHREE-TIERAPPLICATIONARCHITECTURE
	Single-Tier
	 Benefit
	 Drawback:

	Two-tierarchitectures
	Single-tierarchitecturev/sTwo-tierarchitectures

	Three-TierArchitectures
	OverviewofthePresentation Tier
	Technologiesfortheclientsideofthethree-tier architecture
	HTMLForms
	PassingArgumentstoServer-SideScripts
	JavaScript
	Style Sheets
	CascadingStyleSheets(CSS)
	XSL

	OverviewoftheMiddleTier
	CGI:TheCommonGateway Interface
	Figure:SimplediagramofCGI

	ApplicationServers

	Servlets
	JavaServerPages
	MaintainingState
	MaintainingStateattheMiddleTier
	MaintainingStateatthePresentationTier:Cookies

	AdvantagesoftheThree-TierArchitecture

	Module4
	Introduction
	Objectives
	IntroductiontoDBdesign
	AnExample
	Correctschema:
	Incorrectschema:
	Problemswithbadschema
	• AprogramthatupdatesOfficePhoneofadepartment

	InformalDesignGuidelinesforRelationSchemas
	ImpartingClearSemanticstoAttributesinRelations
	Guideline1
	ExamplesofViolatingGuideline1

	RedundantInformationinTuplesandUpdateAnomalies
	Insertion Anomalies
	DeletionAnomalies
	ModificationAnomalies

	Guideline2
	NULLValuesinTuples
	Guideline 3

	GenerationofSpuriousTuples
	Guideline4

	FunctionalDependencies
	DefinitionofFunctional Dependency
	DiagrammaticnotationfordisplayingFDs
	Example:

	NormalFormsBasedonPrimaryKeys
	NormalizationofRelations
	PracticalUseofNormalForms
	DefinitionsofKeysandAttributesParticipatinginKeys
	FirstNormalForm

	SecondNormalForm
	ThirdNormalForm
	 Transitivefunctionaldependency
	 Example:
	 Definition: A relation schema R is in third normal form (3NF) if it is in 2NF and no non-prime attribute A in R is transitively dependent on the primary key

	GeneralDefinitionofSecondandThirdNormalForm
	Boyce-CoddNormalForm
	 NonadditiveJoinTestforBinary Decomposition:
	Let R be the relation not in BCNF, let X R, and let X → A be the FD that causes violation of BCNF. R may be decomposed into two relations:

	MultivaluedDependencyandFourthNormalForm
	FormalDefinitionofMultivaluedDependency
	 Definition: A relation schema R is in 4NF with respect to a set of dependencies F (that includes functional dependencies and multivalued dependencies) if, for every nontrivial multivalued dependency X →→ Y in F+X is a superkey for R

	JoinDependenciesandFifthNormalForm
	Fifthnormalform(project-joinnormalform)

	Chapter2:NormalizationAlgorithms
	InferenceRulesforFunctionalDependencies
	 Forexample:

	EquivalenceofSetsofFunctionalDependencies
	SetsofFunctionalDependencies
	PropertiesofRelationalDecompositions Universal relation schema
	AttributePreservationconditionofaDecomposition
	DesirablePropertiesofDecompositions
	DependencyPreservationProperty
	Nonadditive(Lossless)JoinProperty

	AlgorithmsforRelationalDatabaseSchemaDesign
	Dependency-PreservingandNonadditive(Lossless)Join Decomposition into 3NF Schemas
	NonadditiveJoinDecompositionintoBCNFSchemas
	Dependency-Preserving and Nonadditive (Lossless) Join Decomposition into 3NF Schemas

	AboutNulls,DanglingTuples,andAlternativeRelationalDesigns
	ProblemswithNULLValuesandDanglingTuples

	OtherDependenciesandNormalForms
	InclusionDependencies
	TemplateDependencies
	FunctionalDependenciesBasedonArithmeticFunctionsandProcedures
	Domain-KeyNormalForm
	Problem1
	BOOK(BookTitle,AuthorName,BookType,ListPrice,AuthorAffiliation, Publisher)

	Problem2
	Solution:
	AssignmentQuestions
	ExpectedOutcome
	FurtherReading

	Module5
	Introduction
	Objectives
	IntroductiontoTransactionProcessing
	Single-UserversusMultiuserSystems
	Single-UserversusMultiuserSystems
	• single-user
	• multiuser
	interleavedconcurrency

	Transactions,DatabaseItems,ReadandWriteOperations,andDBMS Buffers
	 BasicDBaccessoperationsthatatransactioncanincludeare:
	 Executingread_item(X)includethefollowing steps:
	 Executingwrite_item(X)includethefollowing steps:

	WhyConcurrencyControlIsNeeded
	1. TheLostUpdateProblem
	2. TheTemporaryUpdate(orDirtyRead)Problem
	3. TheIncorrectSummaryProblem
	4. TheUnrepeatableReadProblem
	WhyRecoveryIsNeeded
	Typesoffailures
	1. Acomputerfailure(systemcrash):
	2. Atransactionorsystemerror:
	3. Localerrorsorexceptionconditionsdetectedbythetransaction:
	4. Concurrencycontrolenforcement:
	5. Diskfailure:
	6. Physicalproblemsandcatastrophes:

	TransactionandSystemConcepts
	TransactionStatesandAdditionalOperations
	TheSystemLog
	CommitPointofaTransaction:
	 DefinitionaCommitPoint:
	 RollBackoftransactions:

	DBMSspecificbufferReplacementpolicies
	DomainSeparation(DS)method
	HotSet Method:
	TheDBMINmethod:

	DesirablePropertiesofTransactions
	CharacterizingSchedulesBasedonRecoverability
	 Conflictingoperations:
	Schedulesclassifiedonrecoverability:
	 Cascadelessschedule:
	 Schedulesrequiringcascadedrollback:
	 StrictSchedules:

	CharacterizingSchedulesBasedonSerializability
	 Serialschedule:
	 Serializableschedule:
	 Resultequivalent:
	 Conflictequivalent:
	 Conflictserializable:
	TestingconflictserializabilityofaScheduleS

	TransactionSupportinSQL
	• Theaccessmode
	• Thediagnosticareasize
	• Theisolationlevel

	Chapter2:ConcurrencyControlinDatabases
	Two-PhaseLockingTechniquesforConcurrencyControl
	TypesofLocksandSystemLockTables
	2. Shared/Exclusive(orRead/Write)Locks
	ConversionofLocks

	GuaranteeingSerializabilitybyTwo-PhaseLocking

	VariationsofTwo-PhaseLocking
	 Basic2PL
	 Conservative(static)2PL
	 Strict2PL
	 Rigorous2PL
	DealingwithDeadlockandStarvation
	Deadlockpreventionprotocols
	 Nowaitingalgorithm,
	 cautiouswaiting

	DeadlockDetection.
	wait-forgraph.
	 Timeouts
	 Starvation.

	ConcurrencyControlBasedonTimestampOrdering
	Timestamps
	TheTimestampOrdering Algorithm
	BasicTimestampOrdering(TO).
	 ThebasicTOalgorithm:
	StrictTimestampOrdering(TO)
	Thomas’sWriteRule

	MultiversionConcurrencyControlTechniques
	MultiversionTechniqueBasedonTimestampOrdering
	MultiversionTwo-PhaseLockingUsingCertifyLocks

	Validation(Optimistic)ConcurrencyControlTechniques
	GranularityofDataItemsandMultipleGranularityLocking
	GranularityLevelConsiderationsforLocking
	MultipleGranularityLevelLocking

	Chapter3:IntroductiontoDatabaseRecoveryProtocols
	RecoveryConcepts
	RecoveryOutlineandCategorizationofRecovery Algorithms
	Caching(Buffering)ofDiskBlocks
	Write-AheadLogging,Steal/No-Steal,andForce/No-Force
	CheckpointsintheSystemLogandFuzzyCheckpointing
	TransactionRollbackandCascadingRollback
	TransactionActionsThatDoNotAffecttheDatabase

	NO-UNDO/REDORecoveryBasedonDeferredUpdate
	RecoveryTechniquesBasedonImmediateUpdate
	 ProcedureRIU_M(UNDO/REDOwithcheckpoints).

	ShadowPaging
	TheARIESRecoveryAlgorithm
	DatabaseBackupandRecoveryfromCatastrophicFailures
	AssignmentQuestions
	ExpectedOutcome
	FurtherReading

